Semigroups of class Co on l2(Z)
DOI:
https://doi.org/10.17268/sel.mat.2023.02.04Palavras-chave:
l2(Z) space, Hellinger-Toeplitz theorem, generalized multipli- cation operator, Semigroup of contraction, graph normResumo
In this work we begin by studying the generalized multiplication operator M on the l2(Z). We prove that this operator is not bounded, is densely defined and symmetric and therefore does not admit a symmetric linear extension to the entire space. We introduce a family of operators on the l2(Z) space with n even and demonstrate that it forms a contraction semigroup of class Co, having −M as its infinitesimal generator. We also prove that if we restrict the domains of that family of operators, they still remain a contraction semigroup. Finally, we give results of existence of solution of the associated abstract Cauchy problem and properties of continuous dependence of the solution in connection to other norms.
Referências
Iorio R, Iorio V. Fourier Analysis and partial differential equation. Cambridge University; 2001.
Muñoz Rivera J. Semigrupos e equacoes Diferenciais Parciais. Petropolis-LNCC; 2007.
Pazy A. Semigroups of linear operator and applications to partial differential equations. Applied Mathematical Sciences. 44 Springer Verlag. Berlin; 1983.
Reed M, Simon B. Methods of Mathematical Physics. Volume I: Functional Analysis. Academic Press; 1980.
Santiago Y, Rojas S. Regularity and wellposedness of a problem to one parameter and its behavior at the limit. Bulletin of the Allahabad Mathematical Society. 2017; 32(2):207-230.
Santiago Ayala Y. Semigroup of weakly continuous operators associated to a generalized Schr¨odinger equation. J. of Applied Mathematics and Physics. 2023; 11(04):1061-1076.
Santiago Ayala Y. Inmersiones y propiedades de los espacios de Sobolev periódico. Matemática: O sujeito e o conhecimento matemático 2. 2023; 66-87.
Santiago Ayala Y. Los espacios l2(Z) con peso: propiedades y su conexión con los espacios de Sobolev. Matemática: O sujeito e o conhecimento matemático 2. 2023; 88-104.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Selecciones Matemáticas

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os autores que publicam nesta revista aceitam as seguintes condições:
Os autores mantêm os direitos autorais e atribuem à revista o direito da primeira publicação, com o trabalho registrado com a licença de atribuição Creative Commons Atribución 4.0 Internacional (CC BY 4.0), que permite que terceiros usem o material publicado sempre que mencionarem a autoria do trabalho e os direitos autorais. Primeira publicação nesta revista.
Os autores podem fazer outros acordos contratuais independentes e adicionais para a distribuição não exclusiva da versão do artigo publicada nesta revista (por exemplo, incluí-la em um repositório institucional ou publicá-la em um livro), desde que afirme claramente que o trabalho Foi publicado nesta revista.
É permitido e recomendado aos autores que publiquem seus trabalhos na Internet (por exemplo, em páginas institucionais ou pessoais) antes e durante o processo de revisão e publicação, pois isso pode levar a trocas produtivas e a uma disseminação maior e mais rápida do trabalho. publicado (Consultar: efeito do acesso aberto).