Existence and continuous dependence of solution of the Boussinesq wave equation in periodic Sobolev spaces

Authors

DOI:

https://doi.org/10.17268/sel.mat.2020.01.07

Keywords:

Family of strongly continuous operators, Boussinesq equation, Fourier Theory, Periodic Sobolev spaces

Abstract

We will begin our study, focusing on the theory of periodic Sobolev spaces, for this we cite [1]. Then, we will prove that the non-homogeneous Boussinesq equation has a local solution and that the solution also continually depends on the initial data and non-homogeneity, we do this intuitively using Fourier theory and in an elegant version introducing families of strongly continuous operators, inspired by the work of Iorio [1], Santiago and Rojas [4], [3] and [2].

References

Iorio R, Iorio V. Analysis and Partial Differential Equations. Cambridge University, 2001.

Santiago Y, Rojas S. Existencia y dependencia continua de la solución de la ecuación de onda no homogénea en espacios de Sobolev Periódico. 2020; 07(01):52-73.

Santiago Y, Rojas S. Existencia y regularidad de solución de la ecuación del calor en espacios de Sobolev Periódico. Selecciones Matemáticas. 2019; 06(01):49-65.

Santiago Y, Rojas S. Regularity and wellposedness of a problem to one parameter and its behavior at the limit. Bulletin of the Allahabad Mathematical Society. 2017; 32(02):207-230.

Published

2020-07-25

How to Cite

Papuico Bernardo, V., & Santiago Ayala, Y. (2020). Existence and continuous dependence of solution of the Boussinesq wave equation in periodic Sobolev spaces. Selecciones Matemáticas, 7(01), 74-96. https://doi.org/10.17268/sel.mat.2020.01.07

Most read articles by the same author(s)