Existence and Regularity of the Solution of Non homogeneous Schrödinger Equation in Periodic Sobolev Spaces

Authors

  • Yolanda Santiago Ayala Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Av. Venezuela S/N Lima 01, Lima-Perú.
  • Santiago Rojas Romero Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Av. Venezuela S/N Lima 01, Lima-Perú.

DOI:

https://doi.org/10.17268/sel.mat.2021.01.04

Keywords:

Groups theory, Schrödinger equation, non homogeneous equation, Periodic Sobolev spaces, Fourier theory

Abstract

In this articlewe prove that the Cauchy problemassociated to the Schrödinger equation in periodic Sobolev spaces is well posed. We do this in an intuitiveway using Fourier theory and in a fine version using Groups theory, inspired by works Iorio [3], Santiago and Rojas [12] and [13]. Also, we study the relationship between initial data and differentiability of the solution.

Finally, we study the corresponding non-homogeneous problemand prove that it is locallywell posed, and that the solution has continuous dependence with respect to the initial data and the non-homogeneity in  compact intervals.

References

Burq N, Gérard P, PtzvetkovN. An instability property of the nonlinear Schrödinger Equation on Sd . Mathematical Research Letters. 2002; 9:323-335.

Cazenave T. An introduction to nonlinear Schrödinger equations. Third Edition. IM-UFRJ, Rio de Janeiro; 1996.

Iorio R, Iorio V. Fourier Analysis and partial differential equation. Cambridge University; 2001.

Killip R, Tao T, Visan M. The cubic nonlinear Schrödinger equation in two dimensions with radial data. J. Eur. Math. Soc. 2009; 11:1203-1258.

Liu Z, Zheng S. Exponential stability of the semigroup associated with a thermoelastic system. Quarterly of Applied Mathematics. 1993; 51(3):535-545.

Moore W. Schrödinger - Life and Thought. Cambridge University Press; 1989.

Muñoz Rivera J, Grazia Naso M. Optimal energy decay rate for a class of weakly dissipative second-order systems with memory. Applied Mathematics Letters. 2010; 23:743-746.

Pazy A. Semigroups of linear operator and applications to partial differential equations. AppliedMathematical Sciences. 44 Springer Verlag. Berlín; 1983.

Santiago Y. Sobre la analiticidad del semigrupo Co asociado a un sistema viscoelástico. Pesquimat. 2003; 06(02):27-36.

Santiago Y. Global existence and exponential stability for a coupled wave system. Journal of Mathematical Sciences: Advances and Applications. 2012; 16(1-2):29-46.

Santiago Y. Tópicos de Análisis Funcional. Fundamentos y Aplicaciones. Editorial Académica Española, Alemania; 2014.

Santiago Y, Rojas S. Regularity and wellposedness of a problem to one parameter and its behavior at the limit. Bulletin of the Allahabad Mathematical Society. 2017; 32(2):207-230.

Santiago Y, Rojas S. Existencia y Regularidad de solución de la ecuación del calor en espacios de Sobolev Periódico. Selecciones Matemáticas. 2019; 06(01):49-65.

Schrödinger E. An Undulatory Theory of theMechanics of Atoms andMolecules. Phys. Rev. 1926; 28:10-49.

Sulem C, SulemP. The nonlinear Schrödinger equation: self-focusing and wave collapse. Springer Verlag, New York; 1999.

Published

2021-07-29

How to Cite

Santiago Ayala, Y., & Rojas Romero, S. (2021). Existence and Regularity of the Solution of Non homogeneous Schrödinger Equation in Periodic Sobolev Spaces. Selecciones Matemáticas, 8(01), 37 - 51. https://doi.org/10.17268/sel.mat.2021.01.04

Most read articles by the same author(s)