Uniqueness Solution of the Heat Equation in Sobolev Periodic Spaces

Authors

DOI:

https://doi.org/10.17268/sel.mat.2020.01.16

Keywords:

Uniqueness solution, heat equation, Non homogeneous equation, Periodic Sobolev spaces, Calculus in Banach Spaces

Abstract

In this article, we prove the uniqueness solution of the homogeneous and non-homogeneous heat equation in periodic Sobolev spaces. We do it in a different way from what we did in [3], in this case we perform differential calculus in Hs-per and we take advantage of the immersion and properties of periodic Sobolev spaces. With this proof we gain to visualize the dissipative property of the homogeneous problem and with this we deduce the continuous dependence with respect to the initial data and the uniqueness solution for both cases: homogeneous and non-homogeneous.

References

Iorio R, Iorio V. Fourier Analysis and partial differential equation. Cambridge University, 2001.

Santiago Y, Rojas S, Quispe T. Espacios de Sobolev periódico y un problema de Cauchy asociado a un modelo de ondas en un fluido viscoso. Theorema, Segunda Época. 2016; 3(4):7-23.

Santiago Y, Rojas S. Existencia y Regularidad de solución de la ecuación del calor en espacios de Sobolev Periódico. Selecciones Matemáticas. 2019; 06(01):49-65.

Published

2020-07-25

How to Cite

Santiago Ayala, Y., & Rojas Romero, S. (2020). Uniqueness Solution of the Heat Equation in Sobolev Periodic Spaces. Selecciones Matemáticas, 7(01), 172-175. https://doi.org/10.17268/sel.mat.2020.01.16

Issue

Section

Communications

Most read articles by the same author(s)