Existence of the solution of a Schrödinger type homogeneous model in periodic Sobolev spaces

Authors

  • Victor Candia Estrada Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Perú.
  • Yolanda Santiago Ayala Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Lima, Perú. https://orcid.org/0000-0003-2516-0871

DOI:

https://doi.org/10.17268/sel.mat.2022.02.11

Keywords:

Unitary groups theory, Schrödinger type equation, homogeneous equation, periodic Sobolev spaces, Fourier theory

Abstract

In this article we prove that the Cauchy problem associated to a Schrödinger type homogeneous model in periodic Sobolev spaces is well posed. We do this in an intuitive way using Fourier theory and in a fine version using Groups theory, inspired by works Iorio [3], Santiago and Rojas [10] and [11]. Finally, we study the relationship between initial data and differentiability of the solution.

References

Burq N, Gérard P, Ptzvetkov N. An instability property of the nonlinear Schrödinger Equation on S^d. Math. Research Letters. 2002; 9:323-335.

Cazenave T. An introduction to nonlinear Schrödinger equations. Third Edition. Rio de Janeiro: IM-UFRJ; 1996.

Iorio R, Iorio V. Fourier Analysis and partial Differential Equations. Cambridge University; 2001.

Liu Z, Zheng S. Semigroups associated with dissipative system. Chapman Hall/CRC; 1999.

Moore W. Schrödinger - Life and Thought. Cambridge University Press; 1989.

Muñoz Rivera J. Semigrupos e equações Diferenciais Parciais. Petropolis-LNCC; 2007.

Pazy A. Semigroups of linear operator and applications to partial differential equations. Applied Mathematical Sciences. 44 Springer Verlag. Berlín; 1983.

Santiago Ayala Y. Sobre la analiticidad del semigrupo Co asociado a un sistema viscoelástico. Pesquimat. 2003; 06(02):27-36.

Santiago Ayala Y. Global existence and exponential stability for a coupled wave system. J. of Mathematical Sciences: Advances and Applications. 2012; 16(1-2):29-46.

Santiago Ayala Y. Tópicos de Análisis Funcional. Fundamentos y Aplicaciones. Alemania. Editorial Académica Española; 2014.

Santiago Y, Rojas S. Regularity and wellposedness of a problem to one parameter and its behavior at the limit. Bulletin of the Allahabad Mathematical Society. 2017; 32(02):207-230.

Santiago Y, Rojas S. Existencia y regularidad de solución de la ecuación del calor en espacios de Sobolev Periódico. Selecciones Matemáticas. 2019; 06(01):49-65.

Santiago Y, Rojas S. Existencia y regularidad de solución de la ecuación de Schrödinger no homogénea en espacios de Sobolev Periódico. Selecciones Matemáticas. 2021; 08(01):37-51.

Schrödinger E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev. 1926; 28:10-49.

Sulem C, Sulem P. The nonlinear Schrödinger equation: self-focusing and wave collapse. Springer Verlag New York; 1999.

Terence T. Nonlinear dispersive equations: Local and Global analysis. Regional conference series in mathematics, No. 106. American Mathematical Society; 2006.

Published

2022-12-30

How to Cite

Candia Estrada , V., & Santiago Ayala, Y. (2022). Existence of the solution of a Schrödinger type homogeneous model in periodic Sobolev spaces. Selecciones Matemáticas, 9(02), 357 - 369. https://doi.org/10.17268/sel.mat.2022.02.11

Most read articles by the same author(s)