Results on the Well Posedness of a Distributional Differential Problem


  • Yolanda Santiago Ayala Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Av. Venezuela S/N Lima 01, Lima, Perú.



Distributional differential equation, zeros of a polynomial, existence of solution, periodic distributional space, Fourier inverse transform


In this work, we study the Fourier Theory in the space of periodic distributions: P’. We analyze the existence of at least one solution for the distributional differential problem in connection with the zeros of a polynomial. We prove that there are infinite solutions when the Fourier coefficients vanish at the integer zeros of the polynomial and otherwise does not have solution. We deduce the existence and uniqueness by considering that the polynomial lacks integer zeros. In the cases of existence, we deduce the analytical solutions. Moreover, we get a result firelated with the continuous dependence of the solution. Finally, we give some conclusions and applications.


Iorio R, Iorio V. Fourier Analysis and partial differential equation. Cambridge University; 2001.

Santiago Ayala Y. Tópicos de Análisis Funcional. Fundamentos y Aplicaciones. Alemania, Edit. Acad. Española; 2014.

Santiago Y, Rojas S. Regularity and wellposedness of a problem to one parameter and its behavior at the limit. Bulletin of the Allahabad Mathematical Society. 2017; 32(2):207-230.

Santiago Y, Rojas S. Existencia y Regularidad de solución de la ecuación del calor en espacios de Sobolev Periódico. Selecciones Matemáticas. 2019; 06(01):49-65.

Santiago Y, Rojas S. Existencia y dependencia continua de la solución de la ecuación de onda no homogénea en espacios de Sobolev Periódico. Selecciones Matemáticas. 2020; 07(01):52-73.

Santiago Y, Rojas S. Existence and continuous dependence of the local solution of non homogeneous KdV-K-S equation in periodic Sobolev spaces. Journal of Mathematical Sciences: Advances and Applications. 2021; 64(01):1-19.



How to Cite

Santiago Ayala, Y. (2021). Results on the Well Posedness of a Distributional Differential Problem. Selecciones Matemáticas, 8(02), 348-359.

Most read articles by the same author(s)