Resultados Sobre el Buen Planteamiento de un Problema Diferencial Distribucional
DOI:
https://doi.org/10.17268/sel.mat.2021.02.11Palavras-chave:
Ecuación diferencial distribucional, ceros de un polinomio, existencia de solución, espacio distribucional periódico, transformada inversa de FourierResumo
En este trabajo, estudiamos la Teoría de Fourier en el espacio de las distribuciones periódicas: P’. Analizamos la existencia de al menos una solución para el problema diferencial distribucional en conexión con los ceros de un polinomio. Probamos que existen infinitas soluciones si los coeficientes de Fourier se anulan en los ceros enteros del polinomio y si esto no ocurre el problema no posee solución. Si el polinomio carece de ceros enteros se consigue probar la existencia y unicidad de solución. En los casos de existencia de solución, se obtiene la expresión analítica de estas. Además, conseguimos un resultado relacionado con la dependencia continua de la solución. Finalmente, damos algunas conclusiones y aplicaciones.
Referências
Iorio R, Iorio V. Fourier Analysis and partial differential equation. Cambridge University; 2001.
Santiago Ayala Y. Tópicos de Análisis Funcional. Fundamentos y Aplicaciones. Alemania, Edit. Acad. Española; 2014.
Santiago Y, Rojas S. Regularity and wellposedness of a problem to one parameter and its behavior at the limit. Bulletin of the Allahabad Mathematical Society. 2017; 32(2):207-230.
Santiago Y, Rojas S. Existencia y Regularidad de solución de la ecuación del calor en espacios de Sobolev Periódico. Selecciones Matemáticas. 2019; 06(01):49-65.
Santiago Y, Rojas S. Existencia y dependencia continua de la solución de la ecuación de onda no homogénea en espacios de Sobolev Periódico. Selecciones Matemáticas. 2020; 07(01):52-73.
Santiago Y, Rojas S. Existence and continuous dependence of the local solution of non homogeneous KdV-K-S equation in periodic Sobolev spaces. Journal of Mathematical Sciences: Advances and Applications. 2021; 64(01):1-19.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Selecciones Matemáticas
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os autores que publicam nesta revista aceitam as seguintes condições:
Os autores mantêm os direitos autorais e atribuem à revista o direito da primeira publicação, com o trabalho registrado com a licença de atribuição Creative Commons Atribución 4.0 Internacional (CC BY 4.0), que permite que terceiros usem o material publicado sempre que mencionarem a autoria do trabalho e os direitos autorais. Primeira publicação nesta revista.
Os autores podem fazer outros acordos contratuais independentes e adicionais para a distribuição não exclusiva da versão do artigo publicada nesta revista (por exemplo, incluí-la em um repositório institucional ou publicá-la em um livro), desde que afirme claramente que o trabalho Foi publicado nesta revista.
É permitido e recomendado aos autores que publiquem seus trabalhos na Internet (por exemplo, em páginas institucionais ou pessoais) antes e durante o processo de revisão e publicação, pois isso pode levar a trocas produtivas e a uma disseminação maior e mais rápida do trabalho. publicado (Consultar: efeito do acesso aberto).