Existence of solution of a distributional problem for a generalized Schrödinger equation
DOI:
https://doi.org/10.17268/sel.mat.2022.01.07Keywords:
Groups theory, existence of solution, Schrödinger equation, distributional problem, weakly continuous operatorsAbstract
In this article, we prove the existence and uniqueness of the solution of the homogeneous generalized Schrödinger equation of order m in the periodic distributional space P0, where m is an even number not a multiple of four. Furthermore, we prove that the solution depends continuously respect to the initial data in P0. Introducing a family of weakly continuous operators, we prove that this family is a group in P0. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained.
Finally, we give the conclusions and remarks derived from this study.
References
Iorio R, Iorio V. Fourier Analysis and partial differential equation. Cambridge University; 2001.
Santiago Y, Rojas S. Regularity and wellposedness of a problem to one parameter and its behavior at the limit. Bulletin of the Allahabad Mathematical Society. 2017; 32(2):207-230.
Santiago Y, Rojas S. Existencia y regularidad de solución de la ecuación de Schrödinger no homogénea en espacios de Sobolev Periódico. Selecciones Matemáticas. 2021; 08(01):37-51.
Santiago Ayala Y. Results on the well posedness of a distributional differential problem. Selecciones Matemáticas. 2021; 08(02):348-359.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Selecciones Matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
1. The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution License,Atribución 4.0 Internacional (CC BY 4.0) which allows third parties to use what is published whenever they mention the authorship of the work And to the first publication in this magazine.
2. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly state that The paper was first published in this journal.
3. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and to a greater and more rapid dissemination Of the published work.