Existencia y dependencia continua de solución de la ecuación Boussinesq de onda en espacios de Sobolev periódico
DOI:
https://doi.org/10.17268/sel.mat.2020.01.07Palavras-chave:
Familia de Operadores fuertemente continuos, ecuación Boussinesq, Teoría de Fourier, Espacios de Sobolev periódicosResumo
Iniciaremos nuestro estudio, focalizándonos en la teoría de los espacios de Sobolev periódico, para esto citamos a [1]. Luego, probaremos que la ecuación de Boussinesq no homogéneo posee solución local y que además la solución depende continuamente respecto a los datos iniciales y a la no homogeneidad, esto lo hacemos de un modo intuitivo usando la teoría de Fourier y en una versión elegante introduciendo familias de operadores fuertemente continuos, inspirados en los trabajos de Iorio [1], Santiago y Rojas [4], [3] y [2].
Referências
Iorio R, Iorio V. Analysis and Partial Differential Equations. Cambridge University, 2001.
Santiago Y, Rojas S. Existencia y dependencia continua de la solución de la ecuación de onda no homogénea en espacios de Sobolev Periódico. 2020; 07(01):52-73.
Santiago Y, Rojas S. Existencia y regularidad de solución de la ecuación del calor en espacios de Sobolev Periódico. Selecciones Matemáticas. 2019; 06(01):49-65.
Santiago Y, Rojas S. Regularity and wellposedness of a problem to one parameter and its behavior at the limit. Bulletin of the Allahabad Mathematical Society. 2017; 32(02):207-230.
Publicado
Como Citar
Edição
Seção
Licença
Os autores que publicam nesta revista aceitam as seguintes condições:
Os autores mantêm os direitos autorais e atribuem à revista o direito da primeira publicação, com o trabalho registrado com a licença de atribuição Creative Commons Atribución 4.0 Internacional (CC BY 4.0), que permite que terceiros usem o material publicado sempre que mencionarem a autoria do trabalho e os direitos autorais. Primeira publicação nesta revista.
Os autores podem fazer outros acordos contratuais independentes e adicionais para a distribuição não exclusiva da versão do artigo publicada nesta revista (por exemplo, incluí-la em um repositório institucional ou publicá-la em um livro), desde que afirme claramente que o trabalho Foi publicado nesta revista.
É permitido e recomendado aos autores que publiquem seus trabalhos na Internet (por exemplo, em páginas institucionais ou pessoais) antes e durante o processo de revisão e publicação, pois isso pode levar a trocas produtivas e a uma disseminação maior e mais rápida do trabalho. publicado (Consultar: efeito do acesso aberto).