Existencia y regularidad de solución de la ecuación del calor en espacios de Sobolev periódico

Yolanda Santiago Ayala, Santiago Rojas Romero

Resumen


En este artículo probamos que el problema de Cauchy asociado a la ecuación del calor en espacios de Sobolev periódico está bien colocado. Hacemos esto en un modo intuitivo usando la teoría de Fourier y en una versión elegante usando la teoría de semigrupos, inspirados en los trabajos de Iorio [1] y Santiago and Rojas [3].
También, estudiamos la relación entre el dato inicial y la diferenciabilidad de la solución. Finalmente, estudiamos el correspondiente problema no homogéneo y probamos que está localmente bien colocado y más aún obtenemos la dependencia continua de la solución respecto al dato inicial y a la no homogeneidad.


Palabras clave


Teoría de semigrupos; Ecuación del calor; Ecuación no homogénea; Espacios de Sobolev periódico; Teoría de Fourier

Texto completo:

PDF HTML

Referencias


Iorio R. and Iorio V. Fourier Analysis and partial differential equation. Cambridge University, 2001.

Santiago Y. Rojas S., Quispe T. Espacios de Sobolev periódico y un problema de Cauchy asociado a un modelo de ondas en un fluido viscoso, Theorema, Segunda Época 3(4) (2016) 7-23.

Santiago, Y. Rojas, S. Regularity and wellposedness of a problem to one parameter and its behavior at the limit, Bulletin of the Allahabad Mathematical Society 32(2) (2017) 207-230.

Rubinstein, I. and Rubinstein, L. Partial differential equations in classical mathematical physics. Cambridge University Press, 1998.

Shahjalal M., Sultana, A., Valluri R., Mitra, N. and Khan, A. Black-Scholes PDE and Ornstein-Uhlenbeck SDE process to analyse stock option: A study in Fuzzy context, Intern. Journal of Mathematics and Computing 1(1) (2015) 1-10.




DOI: http://dx.doi.org/10.17268/sel.mat.2019.01.08

Enlaces refback

  • No hay ningún enlace refback.


Short Title: Sel. mat.

---------------------------------------------------------------------------------------------------------

 ISSN:  2411-1783  Versión Electrónica.                      

---------------------------------------------------------------------------------------------------------------

Derechos reservados © 2014 Departamento de Matemáticas.

Para la distribución y cosecha de los Metadatos de nuestros artículos, usar el Protocolo de Interoperabilidad OAI-PMH:    http://revistas.unitru.edu.pe/index.php/SSMM/oai 

                 

                             E-mail: selecmat@unitru.edu.pe

Selecciones Matemáticas es una revista de la Universidad Nacional de Trujillo publica sus contenidos bajo licencia Creative Commons Attribution-NoComercial-ShareAlike 4.0.