Tecnologías emergentes no térmicas en la industria alimentaria: Avances y potenciales aplicaciones en el procesamiento de alimentos
DOI:
https://doi.org/10.17268/sci.agropecu.2024.006Palavras-chave:
Tecnologías emergentes, conservación de alimentos, preservación de alimentos, sustancias bioactivas, tecnologías verdes, alimentos funcionalesResumo
En la actualidad, la industria alimentaria da prioridad a la seguridad y calidad de los productos, enfrentándose al desafío de mantener la integridad sensorial y nutricional. Para abordar este desafío, se vienen explorando tecnologías no térmicas emergentes que ofrecen ventajas significativas en la mejora de la calidad de los alimentos frente a las tecnologías convencionales. Esta revisión tiene como objetivo proporcionar una comprensión integral de cómo estas tecnologías innovadoras pueden transformar el panorama tradicional del procesamiento de alimentos tal como lo conocemos. Las tecnologías no térmicas tienen el potencial de reducir el consumo de energía destinado a la producción, procesamiento y envasado de alimentos, en comparación con los tratamientos térmicos convencionales. Además, estas tecnologías son particularmente adecuadas para preservar eficientemente los compuestos bioactivos presentes en los alimentos. En esta revisión se describen los principios fundamentales, aplicaciones, ventajas y limitaciones de las tecnologías emergentes en el procesamiento de alimentos. En estas tecnologías se incluyen, campo eléctrico pulsado, ultrasonido, plasma frío, alta presión, irradiación, diodos emisores de luz, luz pulsada y campos magnéticos oscilantes. A pesar de la gran cantidad de estudios respecto al tema, se requiere mayor investigación para optimizar y mejorar la eficiencia de la aplicación de estas tecnologías, solas o en combinación, en el procesamiento de alimentos. La bioaccesibilidad y bioactividad de los compuestos, el valor nutricional, la vida útil y los aspectos sensoriales pueden ser variables de interés.
Referências
Aadil, R. M., Zeng, X.-A., Han, Z., Sahar, A., Khalil, A. A., Rahman, U. U., Khan, M., & Mehmood, T. (2017). Combined effects of pulsed electric field and ultrasound on bioactive compounds and microbial quality of grapefruit juice. Journal of Food Processing and Preservation, 42(2), e13507. https://doi.org/10.1111/jfpp.13507
Abera, G. (2019). Review on high-pressure processing of foods. Cogent Food and Agriculture, 5(1) 1568725. https://doi.org/10.1080/23311932.2019.1568725
Abida, J., Rayees, B., & Masoodi, F. A. (2014). Pulsed light technology: a novel method for food preservation. International Food Research Journal, 21(3), 839.
Abolhasani, A., Barzegar, M., & Sahari, M. A. (2018). Effect of gamma irradiation on the extraction yield, antioxidant, and antityrosinase activities of pistachio green hull extract. Radiation Physics and Chemistry, 144, 373-378. https://doi.org/10.1016/j.radphyschem.2017.09.025
Al-Juhaimi, F., Ghafoor, K., Musa, M., Zcan, O. ¨, Jahurul, M. H. A., Elfadil, Babiker, E., Jinap, S., Sahena, F., Sharifudin, M. S., & Zaidul, I. S. M. (2018). Effect of various food processing and handling methods on preservation of natural antioxidants in fruits and vegetables. Journal of Food Science and Technology, 50(10), 3872–3880. https://doi.org/10.1007/s13197-018-3370-0
Arshad, R. N., Abdul-Malek, Z., Munir, A., Buntat, Z., Ahmad, M. H., Jusoh, Y. M., Bekhit, A. E., Roobad, U., Manzoor, M. F., & Aadil, R. M. (2020). Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends in food science & technology, 104, 1-13. https://doi.org/10.1016/j.tifs.2020.07.008
Arshad, R. N., Abdul-Malek, Z., Roobab, U., Munir, M. A., Naderipour, A., Qureshi, M. I., Bekhit, A., Liu, Z., & Aadil, R. M. (2021). Pulsed electric field: A potential alternative towards a sustainable food processing. Trends in Food Science & Technology, 111, 43-54. https://doi.org/10.1016/j.tifs.2021.02.041
Augusto, P. E. (2020). Challenges, trends and opportunities in food processing. Current Opinion in Food Science, 35, 72-78. https://doi.org/10.1016/j.cofs.2020.03.005
Baenas, N., Iniesta, C., González-Barrio, R., Nuñez-Gómez, V., Periago, M., García-Alonso, F. (2021). Uso poscosecha de luz ultravioleta (UV) y diodo emisor de luz (LED) para mejorar los compuestos bioactivos en tomates refrigerados. Molecules, 26(7), 1847. https://doi.org/10.3390/molecules26071847
Balasubramaniam, V. M., Martinez-Monteagudo, S. I., & Gupta, R. (2015). Principles and application of high pressure–based technologies in the food industry. Annual review of food science and technology, 6, 435-462. https://doi.org/10.1146/annurev-food-022814-015539
Bevilacqua, A., Petruzzi, L., Perricone, M., Speranza, B., Campaniello, D., Sinigaglia, M., & Corbo, M. R. (2018). Nonthermal technologies for fruit and vegetable juices and beverages: overview and advances. Comprehensive Reviews in Food Science and Food Safety, 17(1), 2– 62. https://doi.org/10.1111/1541-4337.12299.
Blahovec, J., Vorobiev, E., & Lebovka, N. (2017). Pulsed electric fields pretreatments for the cooking of foods. Food engineering reviews, 9, 226-236. https://doi.org/10.1007/s12393-017-9170-x
Branas C, Azcondo FJ, Alonso JM. (2013). Solid-state lighting: a system review. Industrial Electronics Magazine, IEEE, 7(4), 6-14. https://doi.org/10.1109/MIE.2013.2280038.
Buchmann, L., Bloch, R., & Mathys, A. (2018). Comprehensive pulsed electric field (PEF) system analysis for microalgae processing. Bioresource technology, 265, 268-274. https://doi.org/10.1016/j.biortech.2018.06.010
Bulbul, V. J., Bhushette, P. R., Zambare, R. S., Deshmukh, R. R., & Annapure, U. S. (2019). Effect of cold plasma treatment on Xanthan gum properties. Polymer Testing, 79, 106056. https://doi.org/10.1016/j.polymertesting.2019.106056
Carrillo-Lopez, L. M., Garcia-Galicia, I. A., Tirado-Gallegos, J. M., Sanchez-Vega, R., Huerta-Jimenez, M., Ashokkumar, M., & Alarcon-Rojo, A. D. (2021). Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties. Ultrasonics Sonochemistry, 73, 105467. https://doi.org/10.1016/j.ultsonch.2021.105467
Chakka, A. K., Sriraksha, M. S., & Ravishankar, C. N. (2021). Sustainability of emerging green non-thermal technologies in the food industry with food safety perspective: A review. Lwt, 151, 112140. https://doi.org/10.1016/j.lwt.2021.112140
Chantakun, K., & Benjakul, S. (2022). Characteristics and qualities of edible bird's nest beverage as affected by thermal pasteurization and sterilization. Journal of Food Science and Technology, 59(10), 4056-4066. https://doi.org/10.1007/s13197-022-05455-8
Chávez-Martínez, A., Reyes-Villagrana, R. A., Rentería-Monterrubio, A. L., Sánchez-Vega, R., Tirado-Gallegos, J. M., & Bolivar-Jacobo, N. A. (2020). Low and high-intensity ultrasound in dairy products: applications and effects on physicochemical and microbiological quality. Foods, 9(11), 1688. https://doi.org/10.3390/foods9111688
Chen, F., Zhang, M., & Yang, C. H. (2020). Application of ultrasound technology in processing of ready-to-eat fresh food: A review. Ultrasonics sonochemistry, 63, 104953. https://doi.org/10.1016/j.ultsonch.2019.104953
Chen, H. H., Chang, H. C., Chen, Y. K., Hung, C. L., Lin, S. Y., & Chen, Y. S. (2016). An improved process for high nutrition of germinated brown rice production: Low-pressure plasma. Food Chemistry, 191, 120–127. https://doi.org/10.1016/j.foodchem.2015.01.083
Coutinho, N. M., Silveira, M. R., Rocha, R. S., Moraes, J., Ferreira, M. V. S., Pimentel, T. C., Freitas, M. Q., Silva, M. C., Raices, R. S. L., Ranadheera, C. S., Borges, F. O., Mathias, S. P., Fernandes, F. A. N., Rodrigues, S., & Cruz, A. G. (2018). Cold plasma processing of milk and dairy products. Trends in Food Science and Technology, 74, 56–68. https://doi.org/10.1016/j.tifs.2018.02.008
D’Souza, C., Yuk, H.-G., Khoo, G. H., & Zhou, W. (2015). Application of Light-Emitting Diodes in Food Production, Postharvest Preservation, and Microbiological Food Safety. Comprehensive Reviews in Food Science and Food Safety, 14(6), 719–740. https://doi.org/10.1111/1541-4337.12155
Dadi, D. W., Emire, S. A., Hagos, A. D., & Eun, J. B. (2019). Effect of ultrasound-assisted extraction of Moringa stenopetala leaves on bioactive compounds and their antioxidant activity. Food Technology and Biotechnology, 57(1), 77. https://doi.org/10.17113/ftb.57.01.19.5877
Daher, D., Le Gourrierec, S., & Pérez-Lamela, C. (2017). Effect of High-Pressure Processing on the Microbial Inactivation in Fruit Preparations and Other Vegetable Based Beverages. Agriculture, 7(9), 72. https://doi.org/10.3390/agriculture7090072
de Jesus, A. L. T., Cristianini, M., Dos Santos, N. M., & Júnior, M. R. M. (2020). Effects of high hydrostatic pressure on the microbial inactivation and extraction of bioactive compounds from açaí (Euterpe oleracea Martius) pulp. Food research international, 130, 108856 https://doi.org/10.1016/j.foodres.2019.108856
de Souza Carvalho, L. M., Lemos, M. C. M., Sanches, E. A., da Silva, L. S., de Araújo Bezerra, J., Aguiar, J. P. L., Souza, F. C., Filho, E. G., & Campelo, P. H. (2020). Improvement of the bioaccessibility of bioactive compounds from Amazon fruits treated using high energy ultrasound. Ultrasonics Sonochemistry, 67, 105148. https://doi.org/10.1016/j.ultsonch.2020.105148
do Amaral Souza, F. D. C., Moura, L. G. S., de Oliveira Bezerra, K., Aguiar, J. P. L., Mar, J. M., Sanches, E. A., Dos Santos, F., Bakry, A., Paulino, B., & Campelo, P. H. (2019). Thermosonication applied on camu–camu nectars processing: Effect on bioactive compounds and quality parameters. Food and Bioproducts Processing, 116, 212-218. https://doi.org/10.1016/j.fbp.2019.06.003
do Nascimento, C., Santos, B. N., & Rodrigues, S. (2022). High‐intensity ultrasound processed acerola juice containing oligosaccharides and dextran promotes Lacticaseibacillus casei NRRL B‐442 growth. International Journal of Food Science & Technology, 57(8), 5186-5194 https://doi.org/10.1111/ijfs.15829
Ekonomou, S. I., Bulut, S., Karatzas, K. A. G., & Boziaris, I. S. (2020). Inactivation of Listeria monocytogenes in raw and hot smoked trout fillets by high hydrostatic pressure processing combined with liquid smoke and freezing. Innovative Food Science & Emerging Technologies, 64, 102427. https://doi.org/10.1016/j.ifset.2020.102427
Fan, L., Liu, X., Ma, Y., & Xiang, Q. (2020). Effects of plasma-activated water treatment on seed germination and growth of mung bean sprouts. Journal of Taibah University for Science, 14(1), 823–830. https://doi.org/10.1080/16583655.2020.1778326
Feroz, F., Nafisa, S., & Noor, R. (2019). Emerging technologies for food safety: high pressure processing (HPP) and cold plasma technology (CPT) for decontamination of foods. Bangladesh Journal of Microbiology, 36(1), 35-43. https://doi.org/10.3329/bjm.v36i1.44281
Figueroa-Sepúlveda, K., Castillo-Robles, N., & Martínez-Girón, J., (2021). Aplicación de altas presiones y otras tecnologías en frutas como alternativa de tratamientos térmicos convencionales. Biotecnología en el Sector Agropecuario y Agroindustrial, 19(2), 271-285. https://doi.org/10.18684/bsaa.v19.n2.2021.1772
Franco-Vega, A., Reyes-Jurado, F., González-Albarrán, D., Ramírez-Corona, N., Palou, E., & López-Malo, A. (2021). Developments and advances of high intensity pulsed light and its combination with other treatments for microbial inactivation in food products. Food Engineering Reviews, 13, 741-768. https://doi.org/10.1007/s12393-021-09280-1
Gabrić, D., Barba, F., Roohinejad, S., Gharibzahedi, S. M. T., Radojčin, M., Putnik, P., & Bursać Kovačević, D. (2017). Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: A review. Journal of Food Process Engineering, 41(1), e12638. https://doi.org/10.1111/jfpe.12638
Gagneten, M., Leiva, G., Salvatori, D., Schebor, C., & Olaiz, N. (2019). Optimization of pulsed electric field treatment for the extraction of bioactive compounds from blackcurrant. Food and Bioprocess Technology, 12, 1102-1109. https://doi.org/10.1007/s11947-019-02283-1
Gavahian, M., & Cullen, P. J. (2019). Cold Plasma as an Emerging Technique for Mycotoxin-Free Food: Efficacy, Mechanisms, and Trends. Food Reviews International, 36(2), 193-214. https://doi.org/10.1080/87559129.2019.1630638
Gómez-López, V. M., Koutchma, T., & Linden, K. (2012). Ultraviolet and pulsed light processing of fluid foods. In Novel thermal and non-thermal technologies for fluid foods (pp. 185-223). Academic Press. https://doi.org/10.1016/B978-0-12-381470-8.00008-6
González‐Casado, S., López‐Gámez, G., Martín‐Belloso, O., Elez‐Martínez, P., & Soliva‐Fortuny, R. (2022). Pulsed light of near‐infrared and visible light wavelengths induces the accumulation of carotenoids in tomato fruits during post‐treatment time. Journal of Food Science, 87(9), 3913-3924. https://doi.org/10.1111/1750-3841.16270
Guillén Sánchez, J. S., Betim Cazarin, C. B., Regina Canesin, M., Reyes, F. G. R., Hoshi Iglesias, A., & Cristianini, M. (2023). Extraction of bioactive compounds from Peruvian purple corn cob by high isostatic pressure. Scientia Agropecuaria, 14(1), 49-57. https://doi.org/10.17268/sci.agropecu.2023.005
Guimarães, J. T., Silva, E. K., Alvarenga, V. O., Costa, A. L. R., Cunha, R. L., Sant'Ana, A. S., ... & Cruz, A. G. (2018). Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrasonics sonochemistry, 44, 251-260. https://doi.org/10.1016/j.ultsonch.2018.02.012
Handayani, M., & Permawati, H. (2017). Gamma irradiation technology to preservation of foodstuffs as an effort to maintain quality and acquaint the significant role of nuclear on food production to Indonesia society: A Review. Energy Procedia, 127, 302-309. https://doi.org/10.1016/j.egypro.2017.08.112
Hasan, Dr- M., Bashir, T., Ghosh, R., Lee, S., & Bae, H. (2017). An Overview of LEDs' Effects on the Production of Bioactive Compounds and Crop Quality. Molecules, 22(9), 1420. https://doi.org/10.3390/molecules22091420
Heinrich V, Zunabovic M, Varzakas T, Bergmair J, Kneifel W (2016) Pulsed light treatment of diferent food types with a special focus on meat: a critical review. Critical Reviews in Food Science and Nutrition, 56, 591–613. https://doi.org/10.1080/10408398.2013.826174
Her, J. Y., Kang, T., Hoptowit, R., & Jun, S. (2019). Oscillating magnetic field (OMF) based supercooling preservation of fresh-cut honeydew melon. Transactions of the ASABE, 62(3), 779-785. https://doi.org/10.13031/trans.13286
Herceg, Z., Kovačević, D. B., Kljusurić, J. G., Jambrak, A. R., Zorić, Z., & Dragović-Uzelac, V. (2016). Gas phase plasma impact on phenolic compounds in pomegranate juice. Food Chemistry, 190, 665–672. https://doi.org/10.1016/j.foodchem.2015.05.135
Hernández-Hernández, H. M., Moreno-Vilet, L., & Villanueva-Rodríguez, S. J. (2019). Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. Innovative Food Science & Emerging Technologies, 58, 102233. https://doi.org/10.1016/j.ifset.2019.102233
Hinds, L. M., O'Donnell, C. P., Akhter, M., & Tiwari, B. K. (2019). Principles and mechanisms of ultraviolet light emitting diode technology for food industry applications. Innovative Food Science & Emerging Technologies, 56, 102153. https://doi.org/10.1016/j.ifset.2019.04.006
Hu, K., Peng, D., Wang, L., Liu, H., Xie, B., & Sun, Z. (2021). Effect of mild high hydrostatic pressure treatments on physiological and physicochemical characteristics and carotenoid biosynthesis in postharvest mango. Postharvest Biology and Technology, 172, 111381. https://doi.org/10.1016/j.postharvbio.2020.111381
Huang, H. W., Wu, S. J., Lu, J. K., Shyu, Y. T., & Wang, C. Y. (2017). Current status and future trends of high-pressure processing in food industry. Food control, 72, 1-8. https://doi.org/10.1016/j.foodcont.2016.07.019
Huang, M., Zhang, M., & Bhandari, B. (2019). Recent development in the application of alternative sterilization technologies to prepared dishes: A review. Critical Reviews in Food Science and Nutrition, 59(7), 1188-1196. https://doi.org/10.1080/10408398.2017.1421140
Hyun, J., & Lee, S. (2020). Blue light-emitting diodes as eco-friendly non-thermal technology in food preservation. Trends in Food Science and Technology, 105, 284–295. https://doi.org/10.1016/j.tifs.2020.09.008
Ihsanullah, I., & Rashid, A. (2017). Current activities in food irradiation as a sanitary and phytosanitary treatment in the Asia and the Pacific Region and a comparison with advanced countries. Food Control, 72, 345–359. https://doi.org/10.1016/j.foodcont.2016.03.011
Indiarto, R., Pratama, A. W., Sari, T. I., & Theodora, H. C. (2020). Food irradiation technology: A review of the uses and their capabilities. Int. J. Eng. Trends Technol, 68(12), 91-98. https://doi.org/10.14445/22315381/IJETT-V68I12P216
Iqbal, A., Murtaza, A., Hu, W., Ahmad, I., Ahmed, A., & Xu, X. (2019). Activation and inactivation mechanisms of polyphenol oxidase during thermal and non-thermal methods of food processing. Food and Bioproducts Processing, 117, 170-182. https://doi.org/10.1016/j.fbp.2019.07.006
Jadhav, H. B., Annapure, U. S., & Deshmukh, R. R. (2021). Non-thermal technologies for food processing. Frontiers in Nutrition, 8, 657090. https://doi.org/10.3389/fnut.2021.657090
Jan, A., Sood, M., Younis, K., & Islam, R. U. (2020). Brown rice based weaning food treated with gamma irradiation evaluated during storage. Radiation Physics and Chemistry, 177, 109158. https://doi.org/10.1016/j.radphyschem.2020.109158
Ji, A., & An, I. (2020). Irradiation: Utilization, Advances, Safety, Acceptance, Future Trends, and a Means to Enhance Food Security. Advances in Applied Science Research, 11(3). https://doi.org/10.36648/0976-8610.11.3.1
Jin, P., Yao, D., Xu, F., Wang, H., & Zheng, Y. (2015). Effect of light on quality and bioactive compounds in postharvest broccoli florets. Food chemistry, 172, 705-709. https://doi.org/10.1016/j.foodchem.2014.09.134
Jurić, S., Ferrari, G., Velikov, K. P., & Donsì, F. (2019). High-pressure homogenization treatment to recover bioactive compounds from tomato peels. Journal of Food Engineering, 262, 170–180. https://doi.org/10.1016/j.jfoodeng.2019.06.011
Kang, T., Her, J. Y., Hoptowit, R., Wall, M. M., & Jun, S. (2019). Investigation of the effect of oscillating magnetic field on fresh-cut pineapple and agar gel as a model food during supercooling preservation. Transactions of the ASABE, 62(5), 1155-1161. https://doi.org/10.13031/trans.13285
Kang, T., Hoptowit, R., & Jun, S. (2020). Effects of an oscillating magnetic field on ice nucleation in aqueous iron‐oxide nanoparticle dispersions during supercooling and preservation of beef as a food application. Journal of Food Process Engineering, 43(11), e13525. https://doi.org/10.1111/jfpe.13525
Kart, D., Gurel, D. B., & Kayaardi, S. (2018). Cold plasma and ultrasound applications in cleaning of food contact surfaces. International Journal of Scientific and Technological Research, 4(8), 17-27.
Kaur, M., & Kumar, M. (2019). An Innovation in Magnetic Field Assisted Freezing of Perishable Fruits and Vegetables: A Review. Food Reviews International, 36(8), 761-780. https://doi.org/10.1080/87559129.2019.1683746
Khan, M. K., Ahmad, K., Hassan, S., Imran, M., Ahmad, N., & Xu, C. (2018). Effect of novel technologies on polyphenols during food processing. Innovative Food Science & Emerging Technologies, 45, 361–381. https://doi.org/10.1016/j.ifset.2017.12.006
Khouryieh, H. A. (2021). Novel and emerging technologies used by the US food processing industry. Innovative Food Science & Emerging Technologies, 67, 102559. https://doi.org/10.1016/j.ifset.2020.102559
Kokalj, D., Hribar, J., Cigić, B., Zlatić, E., Demšar, L., Sinkovič, L., Šircelj, H., Bizjak, G., & Vidrih, R. (2016). Influence of Yellow Light-Emitting Diodes at 590 nm on Storage of Apple, Tomato and Bell Pepper Fruit. Food Technol Biotechnol. 54(2), 228-235. https://doi.org/10.17113/ftb.54.02.16.4096
Kramer, B., Wunderlich, J., & Muranyi, P. (2017). Recent findings in pulsed light disinfection. Journal of Applied Microbiology, 122(4), 830-856. https://doi.org/10.1111/jam.13389
Kwaw, E., Ma, Y., Tchabo, W., Apaliya, M. T., Sackey, A. S., Wu, M., & Xiao, L. (2018). Effect of pulsed light treatment on the phytochemical, volatile, and sensorial attributes of lactic-acid-fermented mulberry juice. International Journal of Food Properties, 21(1), 213-228. https://doi.org/10.1080/10942912.2018.1446024
Leong, T., Juliano, P., & Knoerzer, K. (2017). Advances in ultrasonic and megasonic processing of foods. Food Engineering Reviews, 9(3), 237–256. https://doi.org/10.1007/s12393-017-9167-5
Li, X., Li, M., Ji, N., Jin, P., Zhang, J., Zheng, Y., Zhang, X., & Li, F. (2019). Cold plasma treatment induces phenolic accumulation and enhances antioxidant activity in fresh-cut pitaya (Hylocereus undatus) fruit. Lwt, 115, 108447. https://doi.org/10.1016/j.lwt.2019.108447
Mahendran, R., Ramanan, K. R., Barba, F. J., Lorenzo, J. M., López-Fernández, O., Munekata, P. E., ... & Tiwari, B. K. (2019). Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends in food science & technology, 88, 67-79. https://doi.org/10.1016/j.tifs.2019.03.010
Mandal, R., Mohammadi, X., Wiktor, A., Singh, A., & Pratap Singh, A. (2020). Applications of pulsed light decontamination technology in food processing: An overview. Applied Sciences, 10(10), 3606. https://doi.org/10.3390/app10103606
Marangoni Júnior, L., & Anjos, C. A. R. (2018). Effect of high-pressure processing on characteristics of flexible packaging for foods and beverages. Food Research International, 119, 920-930. https://doi.org/10.1016/j.foodres.2018.10.078
Martínez-Ramos, T., Benedito-Fort, J., Watson, N. J., Ruiz-López, I. I., Che-Galicia, G., & Corona-Jiménez, E. (2020). Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.). Food and Bioproducts Processing, 122, 41-54. https://doi.org/10.1016/j.fbp.2020.03.011
Martínez-Zamora, L., Castillejo, N., Gómez, P. A., & Artés-Hernández, F. (2021). Amelioration effect of LED lighting in the bioactive compounds synthesis during carrot sprouting. Agronomy, 11(2), 304. https://doi.org/10.3390/agronomy11020304
Mustafa, F. H., & Jaafar, M. S. (2013). Comparison of wavelength-dependent penetration depths of lasers in different types of skin in photodynamic therapy. Indian Journal of Physics, 87, 203-209. https://doi.org/10.1007/s12648-012-0213-0
Nabi, B. G., Mukhtar, K., Arshad, R. N., Radicetti, E., Tedeschi, P., Shahbaz, M. U., Walayat, N., Nawaz, A., Inam-Ur-Raheem, M. & Aadil, R. M. (2021). High-pressure processing for sustainable food supply. Sustainability, 13(24), 13908. https://doi.org/10.3390/su132413908
Najafabadi, N. S., Sahari, M. A., Barzegar, M., & Esfahani, Z. H. (2017). Effect of gamma irradiation on some physicochemical properties and bioactive compounds of jujube (Ziziphus jujuba var vulgaris) fruit. Radiation Physics and Chemistry, 130, 62-68 https://doi.org/10.1016/j.radphyschem.2016.07.002
Naveena, B., & Nagaraju, M. (2020). Review on principles, effects, advantages and disadvantages of high pressure processing of food. International Journal of Chemical Studies, 8(2), 2964-2967. https://doi.org/10.22271/chemi.2020.v8.i2at.9202
Niu, D., Zeng, X. A., Ren, E. F., Xu, F. Y., Li, J., Wang, M. S., & Wang, R. (2020). Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Research International, 137, 109715. https://doi.org/10.1016/j.foodres.2020.109715
Nowacka, M., Tappi, S., Wiktor, A., Rybak, K., Miszczykowska, A., Czyzewski, J., Drozdzal, K., Witrowa-Rajchert, D., & Tylewicz, U. (2019). The impact of pulsed electric field on the extraction of bioactive compounds from beetroot. Foods, 8(7), 244. https://doi.org/10.3390/foods8070244
Obileke, K., Onyeaka, H., Miri, T., Nwabor, O. F., Hart, A., Al‐Sharify, Z. T., ... & Anumudu, C. (2022). Recent advances in radio frequency, pulsed light, and cold plasma technologies for food safety. Journal of Food Process Engineering, 45(10), e14138. https://doi.org/10.1111/jfpe.14138
Ojha, K. S., Tiwari, B. K., O’Donnell, C., & Kerry, J. P. (2016). Emerging Nonthermal Food Preservation Technologies. Innovation and Future Trends in Food Manufacturing and Supply Chain Technologies, 257–274. https://doi.org/10.1016/B978-1-78242-447-5.00009-5
Okuda, K., Kawauchi, A., & Yomogida, K. (2020). Quality improvements to mackerel (Scomber japonicus) muscle tissue frozen using a rapid freezer with the weak oscillating magnetic fields. Cryobiology, 95, 130-137. https://doi.org/10.1016/j.cryobiol.2020.05.005
Olatunde, O. O., & Benjakul, S. (2018). Nonthermal Processes for Shelf-Life Extension of Seafoods: A Revisit. Comprehensive Reviews in Food Science and Food Safety, 17(4), 892-904. https://doi.org/10.1111/1541-4337.12354
Otero, L., Pérez-Mateos, M., Rodríguez, A. C., & Sanz, P. D. (2017). Electromagnetic freezing: Effects of weak oscillating magnetic fields on crab sticks. Journal of Food Engineering, 200, 87–94. https://doi.org/10.1016/j.jfoodeng.2016.12.018
Paixão, L. M. N., Fonteles, T. V., Oliveira, V. S., Fernandes, F. A. N., & Rodrigues, S. (2018). Cold Plasma Effects on Functional Compounds of Siriguela Juice. Food and Bioprocess Technology, 12, 110–121. https://doi.org/10.1007/s11947-018-2197-z
Pataro, G., Sinik, M., Capitoli, M. M., Donsì, G., & Ferrari, G. (2015). The influence of post-harvest UV-C and pulsed light treatments on quality and antioxidant properties of tomato fruits during storage. Innovative Food Science & Emerging Technologies, 30, 103-111. https://doi.org/10.1016/j.ifset.2015.06.003
Pattnaik, M., Pandey, P., Martin, G. J., Mishra, H. N., & Ashokkumar, M. (2021). Innovative technologies for extraction and microencapsulation of bioactives from plant-based food waste and their applications in functional food development. Foods, 10(2), 279. https://doi.org/10.3390/foods10020279
Pérez-Andrés, J. M., Charoux, C. M. G., Cullen, P. J., & Tiwari, B. K. (2018). Chemical modifications of lipids and proteins by nonthermal food processing technologies. Journal of Agricultural and Food Chemistry, 66(20), 5041–5054. https://doi.org/10.1021/acs.jafc.
Pérez-Jiménez, J. (2019). Potencial de los polifenoles de la dieta (extraíbles y no extraíbles) en la prevención de enfermedades cardiometabólicas. ANALES RANM, 136(2), 298-307. http://dx.doi.org/10.32440/ar.2019.136.03.rev11 .
Pi, X., Yang, Y., Sun, Y., Wang, X., Wan, Y., Fu, G., Li, X., & Cheng, J. (2022). Food irradiation: a promising technology to produce hypoallergenic food with high quality. Critical Reviews in Food Science and Nutrition, 62(24) 6698-6713. https://doi.org/10.1080/10408398.2021.1904822
Pirozzi, A., Pataro, G., Donsì, F., & Ferrari, G. (2021). Edible coating and pulsed light to increase the shelf life of food products. Food Engineering Reviews, 13, 544-569. https://doi.org/10.1007/s12393-020-09245-w
Pollock, A. M., Singh, A. P., Ramaswamy, H. S., & Ngadi, M. O. (2017). Pulsed light destruction kinetics of L. monocytogenes. LWT, 84, 114-121. https://doi.org/10.1016/j.lwt.2017.05.040
Poonia, A., Pandey, S., & Vasundhara. (2022). Application of light emitting diodes (LEDs) for food preservation, post-harvest losses and production of bioactive compounds: A review. Food Production, Processing and Nutrition, 4(1), 8 https://doi.org/10.1186/s43014-022-00086-0
Prasad, A., Du, L., Zubair, M., Subedi, S., Ullah, A., & Roopesh, M. S. (2020). Applications of light-emitting diodes (LEDs) in food processing and water treatment. Food Engineering Reviews, 12, 268-289. https://doi.org/10.1007/s12393-020-09221-4
Priyadarshini, A., Rajauria, G., O’Donnell, C. P., & Tiwari, B. K. (2018). Emerging Food Processing Technologies and Factors Impacting their Industrial Adoption. Critical Reviews in Food Science and Nutrition, 59(19), 3082-3101, https://doi.org/10.1080/10408398.2018.1483890
Purnell, G., James, C. & James, S.J. The Effects of Applying Oscillating Magnetic Fields During the Freezing of Apple and Potato. Food Bioprocess Technol, 10, 2113–2122 (2017). https://doi.org/10.1007/s11947-017-1983-3
Puza, E. A., Mayo, F. E. C., Polo, J. M. A., la Matta, D., Perea, A., Espinoza, J. S., & Alva, J. C. (2019). Effect of freezing with oscillating magnetic fields on the physical and sensorial characteristics of mango (Mangifera indica L. cv.‘Kent’). Brazilian Journal of Food Technology, 22, e2018169. https://doi.org/10.1590/1981-6723.16918
Qian, H., Liu, T., Deng, M., Miao, H., Cai, C., Shen, W., & Wang, Q. (2016). Effects of light quality on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts. Food chemistry, 196, 1232-1238. https://doi.org/10.1016/j.foodchem.2015.10.055
Radhakrishnan, M., Maqsood, S., & Siliveru, K. (2023). Emerging non-thermal technology applications for sustainable food processing. Frontiers in Sustainable Food Systems, 7, 1190320. https://doi.org/10.3389/fsufs.2023.1190320
Rahaman, A., Zeng, X.-A., Farooq, M. A., Kumari, A., Murtaza, M. A., Ahmad, N., Faisal, M., Hassan, Z., Ahmad, Z., Bo-Ru, C., Jinjing, Z., & Siddeeg, A. (2020). Effect of pulsed electric fields processing on physiochemical properties and bioactive compounds of apricot juice. Journal of Food Process Engineering, 43(8), e13449. https://doi.org/10.1111/jfpe.13449
Ravindran, R., & Jaiswal, A. K. (2019). Wholesomeness and safety aspects of irradiated foods. Food chemistry, 285, 363-368. https://doi.org/10.1016/j.foodchem.2019.02.002
Ribeiro, N. G., Xavier-Santos, D., Campelo, P. H., Guimarães, J. T., Pimentel, T. C., Duarte, M. C. K., Freitas, M. Q., Esmerino, E. A. Silva, M. C., & Cruz, A. G. (2022). Dairy foods and novel thermal and non-thermal processing: a bibliometric analysis. Innovative Food Science & Emerging Technologies, 76, 102934. https://doi.org/10.1016/j.ifset.2022.102934
Rodríguez, A. C., James, C., & James, S. J. (2017). Effects of weak oscillating magnetic fields on the freezing of pork loin. Food and Bioprocess Technology, 10, 1615-1621. https://doi.org/10.1007/s11947-017-1931-2
Rodríguez-Roque, M. J., de Ancos, B., Sánchez-Moreno, C., Cano, M. P., Elez-Martínez, P., & Martín-Belloso, O. (2015). Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. Journal of Functional Foods, 14, 33-43. https://doi.org/10.1016/j.jff.2015.01.020
Rybak, K., Wiktor, A., Pobiega, K., Witrowa-Rajchert, D., & Nowacka, M. (2021). Impact of pulsed light treatment on the quality properties and microbiological aspects of red bell pepper fresh-cuts. Lwt, 149, 111906. https://doi.org/10.1016/j.lwt.2021.111906
Sack, M., & Mueller, G. (2017). Design considerations for electroporation reactors. IEEE Transactions on Dielectrics and Electrical Insulation, 24(4), 1992-2000. https://doi.org/10.1109/TDEI.2016.006219
Sánchez-Moreno, C., González-Peña, D., Colina-Coca, C., Ancos, B. de, Sánchez-Moreno, C., González-Peña, D., Colina-Coca, C., & Ancos, B. de. (2018). Métodos físicos no tradicionales de control microbiológico aplicables al proceso de elaboración de hortalizas de IV Gama. Agrociencia (Uruguay), 22(1), 26–36. https://doi.org/10.31285/agro.22.1.3.
Santos, A. L. dos, Morais, R. A., Soares, C. M. da S., Vellano, P. O., Martins, G. A. de S., Damiani, C., & Souza, A. R. M. de. (2022). Effect of Gamma Irradiation on the Physicochemical, Functional and Bioactive Properties of Red Pitaya (Hylocereus Costaricensis) Bark Flour. SSRN Electronic Journal, 199. https://doi.org/10.2139/ssrn.4025958
Shabana, E. F., Gabr, M. A., Moussa, H. R., El-Shaer, E. A., & Ismaiel, M. M. (2017). Biochemical composition and antioxidant activities of Arthrospira (Spirulina) platensis in response to gamma irradiation. Food Chemistry, 214, 550-555. https://doi.org/10.1016/j.foodchem.2016.07.109
Siddeeg, A., Faisal Manzoor, M., Haseeb Ahmad, M., Ahmad, N., Ahmed, Z., Kashif Iqbal Khan, M., Maan, A., Nisa, M., Zeng, Z., & Ammar, A. F. (2019). Pulsed electric field-assisted ethanolic extraction of date palm fruits: Bioactive compounds, antioxidant activity and physicochemical properties. Processes, 7(9), 585. https://doi.org/10.3390/pr7090585
Singla, M., & Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73, 105506. https://doi.org/10.1016/j.ultsonch.2021.105506
Song K, Taghipour F, Mohseni M (2018) Microorganisms inactivation by continuous and pulsed irradiation of ultraviolet lightemitting diodes (UV-LEDs). Chemical Engineering Journal, 343, 362–370. https://doi.org/10.1016/j.cej.2018.03.020
Suslick, K. S., Eddingsaas, N. C., Flannigan, D. J., Hopkins, S. D., & Xu, H. (2011). Extreme conditions during multibubble cavitation: Sonoluminescence as a spectroscopic probe. Ultrasonics sonochemistry, 18(4), 842-846. https://doi.org/10.1016/j.ultsonch.2010.12.012
Tirado-Kulieva, V., Miranda Zamora, W. R., & Leyva Povis, N. L. (2021). Análisis crítico del potencial del plasma frío como tecnología no destructiva en el procesamiento alimentario: situación actual y tendencias futuras. Revista de La Universidad Del Zulia, 12(32), 284–316. https://doi.org/10.46925//rdluz.32.18
Ucar, Y., Ceylan, Z., Durmus, M., Tomar, O., & Cetinkaya, T. (2021). Application of cold plasma technology in the food industry and its combination with other emerging technologies. Trends in Food Science & Technology, 114, 355-371. https://doi.org/10.1016/j.tifs.2021.06.004
Valdivia-Nájar, C. G., Martín-Belloso, O., & Soliva-Fortuny, R. (2018). Kinetics of the changes in the antioxidant potential of fresh-cut tomatoes as affected by pulsed light treatments and storage time. Journal of Food Engineering, 237, 146-153. https://doi.org/10.1016/j.jfoodeng.2018.05.029
Vargas-Ramella, M., Pateiro, M., Gavahian, M., Franco, D., Zhang, W., Khaneghah, A. M., Guerrero-Sánchez, Y., & Lorenzo, J. M. (2021). Impact of pulsed light processing technology on phenolic compounds of fruits and vegetables. Trends in Food Science & Technology, 115, 1-11. https://doi.org/10.1016/j.tifs.2021.06.037
Viacava, F., Ortega-Hernández, E., Welti-Chanes, J., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2020). Using High Hydrostatic Pressure Processing Come-Up Time as an Innovative Tool to Induce the Biosynthesis of Free and Bound Phenolics in Whole Carrots. Food and Bioprocess Technology, 13, 1717–1727 https://doi.org/10.1007/s11947-020-02512-y
Waghmare, R. (2021). Cold plasma technology for fruit based beverages: A review. Trends in Food Science and Technology, 114, 60–69. https://doi.org/10.1016/j.tifs.2021.05.018
Wang, L., Boussetta, N., Lebovka, N., & Vorobiev, E. (2020). Cell disintegration of apple peels induced by pulsed electric field and efficiency of bio-compound extraction. Food and Bioproducts Processing, 122, 13-21. https://doi.org/10.1016/j.fbp.2020.03.004
Wang, Q., Li, Y., Sun, D. W., & Zhu, Z. (2018). Enhancing food processing by pulsed and high voltage electric fields: Principles and applications. Critical reviews in food science and nutrition, 58(13), 2285-2298. https://doi.org/10.1080/10408398.2018.1434609
Wojcik, A., & Harms-Ringdahl, M. (2019). Radiation protection biology then and now. International journal of radiation biology, 95(7), 841-850. https://doi.org/10.1080/09553002.2019.1589027
Woldemariam, H. W., & Emire, S. A. (2019). High Pressure Processing of Foods for Microbial and Mycotoxins Control: current trends and future prospects. Cogent Food and Agriculture, 5(1), 1622184. https://doi.org/10.1080/23311932.2019.1622184
Wolf, R. A. (2012). Atmospheric pressure plasma for surface modification. John Wiley & Sons.
Yanğıç Yüksel Ç, Karagözlü N. (2017). Soğuk Atmosferik Plazma Teknolojisi ve Gıdalarda Kullanımı. Adü Ziraat Dergisi, 14(2), 81-86. https://doi.org/10.25308/aduziraat.332684
Yasui, K., & Yasui, K. (2018). Acoustic cavitation (pp. 1-35). Springer International Publishing.
Yuan, S., Li, C., Zhang, Y., Yu, H., Xie, Y., Guo, Y., & Yao, W. (2021). Ultrasound as an emerging technology for the elimination of chemical contaminants in food: A review. Trends in Food Science & Technology, 109, 374-385. https://doi.org/10.1016/j.tifs.2021.01.048
Zadeh, J. H., Pazır, F. (2023). Investigation of the potential applications of cold plasma technology in food safety. GIDA, 48(3) 614-626. https://doi.org/10.15237/ gida.GD22102
Zhang, C., Lyu, X., Arshad, R. N., Aadil, R. M., Tong, Y., Zhao, W., & Yang, R. (2023). Pulsed electric field as a promising technology for solid foods processing: A review. Food Chemistry, 403, 134367. https://doi.org/10.1016/j.foodchem.2022.134367
Zhang, Z., Zhang, B., Yang, R., & Zhao, W. (2020). Recent Developments in the Preservation of Raw Fresh Food by Pulsed Electric Field. Food Reviews International, 1–19. https://doi.org/10.1080/87559129.2020.1860083
Zhao, H., Zhang, F., Hu, H., Liu, S., & Han, J. (2017). Experimental study on freezing of liquids under static magnetic field. Chinese Journal of Chemical Engineering, 25(9), 1288-1293. https://doi.org/10.1016/j.cjche.2016.10.026
Zhao, L., Zhang, Y., Guo, S., Xiong, W., Xia, H., Liu, W., Pan, Z., & Venkitasamy, C. (2017). Effect of irradiation on quality of vacuum-packed spicy beef chops. Journal of Food Quality, 2017. https://doi.org/10.1155/2017/1054523
Zhou, B., Lee, H., & Feng, H. (2012). Microbial decontamination of food by power ultrasound. In Microbial decontamination in the food industry (pp. 300-321). Woodhead Publishing. https://doi.org/10.1533/9780857095756.2.300
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Scientia Agropecuaria
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).