Semillas como subproducto del procesamiento de frutas en la industria de alimentos: Composición proximal, perfil fitoquímico y aprovechamiento en el marco de la economía circular

Autores/as

  • Luz María Paucar-Menacho Universidad Nacional del Santa, Facultad de Ingeniería, Departamento de Ingeniería Agroindustrial y Agrónoma, Nuevo Chimbote, Ancash, Perú. https://orcid.org/0000-0001-5349-6167
  • Jordy Campos-Rodriguez Universidad Nacional del Santa, Facultad de Ingeniería, Departamento de Ingeniería Agroindustrial y Agrónoma, Nuevo Chimbote, Ancash, Perú. https://orcid.org/0000-0002-1769-4761
  • Cesar Moreno-Rojo Universidad Nacional del Santa, Facultad de Ingeniería, Departamento de Ingeniería Agroindustrial y Agrónoma, Nuevo Chimbote, Ancash, Perú. https://orcid.org/0000-0002-7143-4450
  • Saúl Ricardo Chuqui-Diestra Departamento Académico de Ingeniería Química, Facultad de Ingeniería Química y Metalurgia, Universidad Nacional de San Cristóbal de Huamanga, Huamanga, Ayacucho, Perú. https://orcid.org/0000-0003-2582-2716
  • Saul Eusebio-Lara Universidad Nacional del Santa, Facultad de Ingeniería, Departamento de Ingeniería Agroindustrial y Agrónoma, Nuevo Chimbote, Ancash, Perú. https://orcid.org/0000-0001-6875-240X

DOI:

https://doi.org/10.17268/sci.agropecu.2025.018

Palabras clave:

Subproductos agroindustriales, antioxidantes, extracción de aceite, compuestos bioactivos, economía circular

Resumen

Este estudio analiza el potencial de 12 semillas de la región del Perú como subproducto del procesamiento de frutas como una alternativa sostenible para la reducción de desechos y la valorización de compuestos bioactivos. Se destaca su composición química y el papel que pueden desempeñar en la recuperación de compuestos bioactivos con propiedades antioxidantes, antimicrobianas y funcionales. Abordando la posibilidad de utilizar los subproductos de frutas en diversos sectores industriales, como el alimentario, farmacéutico y nutracéutico, contribuyendo así a la economía circular y a un manejo más sostenible de los recursos naturales. La revisión menciona la importancia de abordar desafíos como la presencia de antinutrientes y contaminantes, así como la evaluación de métodos de procesamiento que permitan reducir estos compuestos, resaltando la necesidad de garantizar su seguridad para el consumo y su viabilidad en distintos sectores, incluyendo el alimentario, cosmético y farmacéutico.

Citas

AbdelFattah, M. S., Badr, S. E., & Elsaid, A. S. (2020). Nutritive value and chemical composition of prickly pear seeds (Opuntia ficus indica L.) growing in Egypt. International Journal of Agricultural Policy and Research, 8(1), 1-10. https://doi.org/10.15739/IJAPR.20.001i

Abiola, T., Falana, L. K., & Adediji, D. O. (2018). Proximate Composition, Phytochemical Analysis and in vivo Antioxidant Activity of Pomegranate Seeds (Punica granatum) in Female Albino Mice. Biochemistry & Pharmacology, 7(2), 1000250. https://doi.org/10.4172/2167-0501.1000250

Adnan, L., Osman, A., & Abdul Hamid, A. (2011). Antioxidant activity of different extracts of red pitaya (Hylocereus polyrhizus) seed. International Journal of Food Properties 14(6), 1171-1181. https://doi.org/10.1080/10942911003592787

Adubofuor, J., Akyereko, Y. G., Batsa, V., Apeku, O. J. D., Amoah, I., & Diako, C. (2021). Nutrient composition and physical properties of two orange seed varieties. International journal of food science, 2021, 6415620. https://doi.org/10.1155/2021/6415620

Aguilar-Hernández, G., García-Magaña, M. D. L., Vivar-Vera, M. D. L. Á., Sáyago-Ayerdi, S. G., Sánchez-Burgos, J. A., Morales-Castro, J., ... & Montalvo González, E. (2019). Optimization of ultrasound-assisted extraction of phenolic compounds from Annona muricata by-products and pulp. Molecules, 24(5), 904. https://doi.org/10.3390/molecules24050904

Akram, S., & Mushtaq, M. (2019). Dragon (Hylocereus megalanthus) seed oil. En M. Ramadan (Eds.), Fruit Oils: Chemistry and Functionality (pp. 675-89). Springer. https://doi.org/10.1007/978-3-030-12473-1

Al Juhaimi, F., Geçgel, Ü., Gülcü, M., Hamurcu, M., & Özcan, M. M. (2017). Bioactive properties, fatty acid composition and mineral contents of grape seed and oils. South African Journal of Enology and Viticulture, 38(1), 103-108. https://doi.org/10.21548/38-1-1042

Al Juhaimi, F., Özcan, M. M., Uslu, N., Ghafoor, K., & Babiker, E. E. (2018). Effect of microwave heating on phenolic compounds of prickly pear (Opuntia ficus‐indica L.) seeds. Journal of Food Processing and Preservation, 42(2), e13437. https://doi.org/10.1111/jfpp.13437

Aldubayan, M. A. (2018). Qualitative and quantitative characterization of biologically active compounds of red grape (Vitis vinifera) seeds Extract. Journal of Bioscience and Applied Research, 4(4), 410-417. https://doi.org/10.21608/jbaar.2018.152438

Alfarabi, M., Siagian, F. E., Cing, J. M., Suryowati, T., Turhadi, T., Suyono, M. S., & Naibaho, F. B. (2022). Bioactivity and metabolite profile of papaya (Carica papaya) seed extract. Biodiversitas Journal of Biological Diversity, 23(9), 4589-4600. https://doi.org/10.13057/biodiv/d230926

Allaqaband, S., Dar, A. H., Patel, U., Kumar, N., Nayik, G. A., Khan, S. A., ... & Shaikh, A. M. (2022). Utilization of fruit seed-based bioactive compounds for formulating the nutraceuticals and functional food: A review. Frontiers in nutrition, 9, 902554. https://doi.org/10.3389/fnut.2022.902554

Alves, E., Simoes, A., & Domingues, M. R. (2021). Fruit seeds and their oils as promising sources of value-added lipids from agro-industrial byproducts: Oil content, lipid composition, lipid analysis, biological activity and potential biotechnological applications. Critical Reviews in Food Science and Nutrition, 61(8), 1305-1339. https://doi.org/10.1080/10408398.2020.1757617

Ambigaipalan, P., de Camargo, A. C., & Shahidi, F. (2017). Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESI-MSn. Food Chemistry, 221, 1883-1894. https://doi.org/10.1016/j.foodchem.2016.10.058

Amri, Z., Lazreg-Aref, H., Mekni, M., El-Gharbi, S., Dabbaghi, O., Mechri, B., & Hammami, M. (2017). Oil characterization and lipids class composition of pomegranate seeds. BioMed research international, 2037341. https://doi.org/10.1155/2017/2037341

Andasuryani, A., Zainal, P. W., & Ifmalinda, I. (2020). Chemical characteristic of sweet passion fruit (Passiflora lingularis Juss) seeds from Indonesia based on maturity levels. Journal of Physics: Conference Series, 1469(1), 012001. https://doi.org/10.1088/17426596/1469/1/012001

Angelova-Romova, M. Y., Simeonova, Z. B., Petkova, Z. Y., Antova, G. A., & Teneva, O. T. (2019). Lipid composition of watermelon seed oil. Bulgarian Chemical Communications, 51(D), 268-272.

Antoniassi, R., Wilhelm, A. E., Reis, S. L. R., Regis, S. A., Faria-Machado, A. F., Bizzo, H. R., & Cenci, S. A. (2022). Expeller pressing of passion fruit seed oil: Pressing efficiency and quality of oil. Brazilian Journal of Food Technology, 25, e2021168. https://doi.org/10.1590/1981-6723.16821

Antonisamy, A. J., Marimuthu, S., Malayandi, S., Rajendran, K., Lin, Y. C., Andaluri, G., Lee, S. L., & Ponnusamy, V. K. (2023). Sustainable approaches on industrial food wastes to value-added products–A review on extraction methods, characterizations, and its biomedical applications. Environmental Research, 217, 114758. https://doi.org/10.1016/j.envres.2022.114758.

Artica Mallqui, L., Baquerizo Canchumanya, M., Rosales Papa, H., & Rodríguez Paucar, G. (2021). Ácidos grasos, tocoferoles y fitoesteroles en aceites de semillas de granadilla y zapallo extraído con CO2 supercrítico. Revista de la Sociedad Química del Perú, 87(1), 3-13. http://dx.doi.org/10.37761/rsqp.v87i1.317.

Babalola, J. O., Adesina, D. A., Alabi, O. O., Adepoju, M. R., Bamisaiye, Y. O., & Awotunde, B. R. (2021). Effect of processing method on proximate, minerals, phytochemcals and anti-nutrients present in Baobab seeds (Adansonia digitata). GSC Advanced Research and Reviewa, 6(3), 1–10. https://doi.org/10.30574/gscarr.2021.6.3.0007

Biswas, R., Ghosal, S., Chattopadhyay, A., & Datta, S. (2017). A comprehensive review on watermelon seed oil–An underutilized product. IOSR Journal of Pharmacy, 7(11), 01-07.

Bocco, A., Cuvelier, M. E., Richard, H., & Berset, C. (1998). Antioxidant activity and phenolic composition of citrus peel and seed extracts. Journal of agricultural and food chemistry, 46(6), 2123-2129. https://doi.org/10.1021/jf9709562

Bolaji, O. T., Adeyeye, S. A. O., & Ogunmuyiwa, D. (2022). Quality evalution of bread produced from whole wheat flour blended with watermelon seed flour. Journal of Culinary Science & Technology, 22(4), 607-630. https://doi.org/10.1080/15428052.2022.2068466

Boroushaki, M. T., Mollazadeh, H., & Afshari, A. R. (2016). Pomegranate seed oil: A comprehensive review on its therapeutic effects. International Journal of Pharmaceutical Sciences and Research, 7(2), 430-442. https://doi.org/10.13040/IJPSR.0975-8232.7(2).430-42

Bouaouich, A., Bouguerche, F., Mahiaoui, H., Peron, G., & Bendif, H. (2023). Phytochemical elucidation and antioxidant activity of seeds from three prickly pear (Opuntia ficus-indica L.) cultivars from Algeria. Applied Sciences, 13(3), 1444. https://doi.org/10.3390/app13031444

Boyapati, T., Rana, S. S., & Ghosh, P. (2023). Microwave-assisted extraction of dragon fruit seed oil: Fatty acid profile and functional properties. Journal of the Saudi Society of Agricultural Sciences, 22(3), 149-157. https://doi.org/10.1016/j.jssas.2022.08.001

Braga, L. P., Amorim, K. A., Goulart, G. A. S., Asquieri, E. R., & Damiani, C. (2024). Mini cakes prepared with press-cake flour obtained from the oil extraction from araticum seeds (Annona crassiflora Mart.). Food Science and Technology, 44. https://doi.org/10.5327/fst.00078

Braide, W. O. I. J., Odiong, I. J., & Oranusi, S. (2012). Phytochemical and Antibacterial properties of the seed of watermelon (Citrullus lanatus). Prime Journal of Microbiology Research, 2(3), 99-104.

Cassani, L., & Gomez-Zavaglia, A. (2022). Sustainable food systems in fruits and vegetables food supply chains. Frontiers in Nutrition, 9, 829061. https://doi.org/10.3389/fnut.2022.829061

Cesar, M. B., Barbalho, S. M., Otoboni, A. M. M. B., & Quesada, K. (2022). Possible industrial applications of passion fruit oil. International Journal of Development Research, 12(2), 53855-53858. https://doi.org/10.37118/ijdr.23942.02.2022

Chen, L., Li, D., Zhu, C., Ma, X., & Rong, Y. (2021). Fatty acids and flavor components in the oil extracted from golden melon seeds. European Journal of Lipid Science and Technology, 123(4), 2000233. https://doi.org/10.1002/ejlt.202000233

Cheok, C. Y., Mohd Adzahan, N., Abdul Rahman, R., Zainal Abedin, N. H., Hussain, N., Sulaiman, R., & Chong, G. H. (2018). Current trends of tropical fruit waste utilization. Critical Reviews in Food Science and Nutrition, 58(3), 335-361. https://doi.org/10.1080/10408398.2016.1176009

Choe, U., Childs, H., Zeng, M., Zheng, W., Zhu, H., Zhu, L., Xie, Z., Gao, B., & Yu, L. (2022). Value-added utilization of fruit seed oils for improving human health: A progress review. ACS Food Science & Technology, 3(4), 528-538. https://doi.org/10.1021/acsfoodscitech.2c00120

Chóez, I., Herrera, D., Miranda, M., & Manzano, P. I. (2015). Chemical composition of essential oils of shells, juice and seeds of Passiflora ligularis Juss from Ecuador. Emirates Journal of Food and Agriculture, 27(8), 650-653. https://doi.org/10.9755/ejfa.2015.04.039

Chougui, N., Tamendjari, A., Hamidj, W., Hallal, S., Barras, A., Richard, T., & Larbat, R. (2013). Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds. Food chemistry, 139(1-4), 796-803. https://doi.org/10.1016/j.foodchem.2013.01.054

Chougui, N., Tamendjari, A., Hamidj, W., Hallal, S., Barras, A., Richard, T., & Larbat, R. (2013). Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds. Food chemistry, 139(1-4), 796-803. https://doi.org/10.1016/j.foodchem.2013.01.054

da Costa, C. A. R., Machado, G. G. L., Rodrigues, L. J., de Barros, H. E. A., Natarelli, C. V. L., & Boas, E. V. D. B. V. (2023). Phenolic compounds profile and antioxidant activity of purple passion fruit's pulp, peel and seed at different maturation stages. Scientia Horticulturae, 321, 112244. https://doi.org/10.1016/j.scienta.2023.112244

da Silva, A. C., & Jorge, N. (2016). Bioactive compounds of oils extracted from fruits seeds obtained from agroindustrial waste. European Journal of Lipid Science and Technology, 119(4), 1600024. https://doi.org/10.1002/ejlt.201600024

de Araujo, F. F., de Paulo Farias, D., Neri-Numa, I. A., & Pastore, G. M. (2021). Underutilized plants of the Cactaceae family: Nutritional aspects and technological applications. Food Chemistry, 362, 130196. https://doi.org/10.1016/j.foodchem.2021.130196

de Araújo, F. F., de Paulo Farias, D., Neri-Numa, I. A., & Pastore, G. M. (2021). Polyphenols and their applications: An approach in food chemistry and innovation potential. Food chemistry, 338, 127535. https://doi.org/10.1016/j.foodchem.2020.127535

De Wit, M., Hugo, A., & Shongwe, N. (2017). Quality assessment of seed oil from selected cactus pear cultivars (Opuntia ficus‐indica and Opuntia robusta). Journal of food processing and preservation, 41(3), e12898. https://doi.org/10.1111/jfpp.12898

Dos Reis, L. C. R., Facco, E. M. P., Salvador, M., Flôres, S. H., & de Oliveira Rios, A. (2018). Antioxidant potential and physicochemical characterization of yellow, purple and orange passion fruit. Journal of Food Science and Technology, 55, 2679-2691. https://doi.org/10.1007/s13197-018-3190-2

Doshi, P., Adsule, P., Banerjee, K., & Oulkar, D. (2015). Phenolic compounds, antioxidant activity and insulinotropic effect of extracts prepared from grape (Vitis vinifera L) byproducts. Journal of Food Science and Technology, 52, 181-190. https://doi.org/10.1007/s13197-013-0991-1

Egbuonu, A. C. C., Harry, E. M., & Orji, I. A. (2016). Comparative proximate and antibacterial properties of milled Carica papaya (pawpaw) peels and seeds. British Journal of Pharmaceutical Research, 12(1), 1-8. https://doi.org/10.9734/BJPR/2016/26808

Elagbar, Z. A., Naik, R. R., Shakya, A. K., & Bardaweel, S. K. (2016). Fatty acids analysis, antioxidant and biological activity of fixed oil of Annona muricata L. seeds. Journal of Chemistry, 2016. https://doi.org/10.1155/2016/6948098

El-Safy, F. S., Salem, R. H., & Abd El-Ghany, M. E. (2012). Chemical and nutritional evaluation of different seed flours as novel sources of protein. World Journal of Dairy & food sciences, 7(1), 59-65. https://doi.org/10.5829/idosi.wjdfs.2012.7.1.612

Enemor, V., Oguazu, C., Odiakosa, A., & Okafor, S. (2019). Evaluation of the medicinal properties and possible nutrient composition of Citrullus lanatus (Watermelon) seeds. Research Journal of Medicinal Plants, 13(4), 129-135.

Fadimu, G. J., Ghafoor, K., Babiker, E. E., Al-Juhaimi, F., Abdulraheem, R. A., & Adenekan, M. K. (2020). Ultrasound-assisted process for optimal recovery of phenolic compounds from watermelon (Citrullus lanatus) seed and peel. Journal of Food Measurement and Characterization, 14, 1784-1793. https://doi.org/10.1007/s11694-020-00426-z

Farag, M. A., Eldin, A. B., & Khalifa, I. (2022). Valorization and extraction optimization of Prunus seeds for food and functional food applications: A review with further perspectives. Food Chemistry, 388, 132955. https://doi.org/10.1016/j.foodchem.2022.132955.

Fidelis, M., de Moura, C., Kabbas Junior, T., Pap, N., Mattila, P., Mäkinen, S., Putnik, P., Kovačević, D., Tian, Y., Yang, B., & Granato, D. (2019). Fruit seeds as sources of bioactive compounds: Sustainable production of high value-added ingredients from by-products within circular economy. Molecules, 24(21), 3854. https://doi.org/10.3390/molecules24213854.

Fierascu, R. C., Sieniawska, E., Ortan, A., Fierascu, I., & Xiao, J. (2020). Fruits by-products–A source of valuable active principles. A short review. Frontiers in bioengineering and biotechnology, 8, 319. https://doi.org/10.3389/fbioe.2020.00319

Flores-Jiménez, N. T., Ulloa, J. A., & Urías-Silvas, J. E. (2024). Assessment of the physicochemical, functional and structural characteristics of a defatted flour from guamuchil (Pithecellobium dulce (Roxb.) seeds. Future Foods, 9, 100351. https://doi.org/10.1016/j.fufo.2024.100351

Folayan, A. J., Anawe, P. A. L., Aladejare, A. E., & Ayeni, A. O. (2019). Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass. Energy Reports, 5, 793-806. https://doi.org/10.1016/j.egyr.2019.06.013

Fourati, M., Smaoui, S., Hlima, H. B., Elhadef, K., Braïek, O. B., Ennouri, K., Mtibaa, A., & Mellouli, L. (2020). Bioactive compounds and pharmacological potential of pomegranate (Punica granatum) seeds-a review. Plant Foods for Human Nutrition, 75, 477-486. https://doi.org/10.1007/s11130-020-00863-7

Fragassa, C., Vannucchi de Camargo, F., & Santulli, C. (2024). Sustainable biocomposites: Harnessing the potential of waste seed-based fillers in eco-friendly materials. Sustainability, 16(4), 1526. https://doi.org/10.3390/su16041526

Fundo, J. F., Miller, F. A., Garcia, E., Santos, J. R., Silva, C. L., & Brandão, T. R. (2018). Physicochemical characteristics, bioactive compounds and antioxidant activity in juice, pulp, peel and seeds of Cantaloupe melon. Journal of Food Measurement and Characterization, 12, 292-300. https://doi.org/10.1007/s11694-017-9640-0

Garavaglia, J., Markoski, M. M., Oliveira, A., & Marcadenti, A. (2016). Grape seed oil compounds: Biological and chemical actions for health. Nutrition and metabolic insights, 9, NMI-S32910. https://doi.org/10.4137/NMI.S32910

Ghafoor, K., Sarker, M. Z. I., Al-Juhaimi, F. Y., Babiker, E. E., Alkaltham, M. S., & Almubarak, A. K. (2022). Extraction and evaluation of bioactive compounds from date (Phoenix dactylifera) seed using supercritical and subcritical CO2 techniques. Foods, 11(12), 1806. https://doi.org/10.3390/foods11121806

Goula, A. M., Papatheodorou, A., Karasavva, S., & Kaderides, K. (2018). Ultrasound-assisted aqueous enzymatic extraction of oil from pomegranate seeds. Waste and Biomass Valorization, 9, 1-11. https://doi.org/10.1007/s12649-016-9740-9

Hall, R. M., Mayer, D. A., Mazzutti, S., & Ferreira, S. R. S. (2018). Simulating large scale SFE applied to recover bioactive compounds from papaya seeds. The Journal of Supercritical Fluids, 140, 302-309. https://doi.org/10.1016/j.supflu.2018.07.013

Hamda, A. S., Muleta, M. D., Jayakumar, M., Periyasamy, S., & Gurunathan, B. (2024). Valorization of Fruit Processing Industry Waste into Value-Added Chemicals. In Value Added Products From Food Waste (pp. 107-126). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-48143-7_6

Hanaa, M., Elshafie, M., Ismail, H., Mahmoud, M., & Ibrahim, H. (2015). Chemical studies and phytochemical screening of grape seeds (Vitis Vinifera L.). Minia Journal of Agricultural Research and Development, 35(2), 313-325.

Hayyan, A., Abed, K. M., Hayyan, M., Salleh, M. Z. M., Keat, C. W., Ng, Y. S., Hizaddin, H. F., Mohd, M. R., Hashim, M. A., Alanazi, Y. M., Saleh, J., Gupta, B. S., & Putra, S. S. S. (2024). Ultrasonic assisted extraction of oil from argan seeds using ionic liquids as novel co-solvent. Biomass Conversion and Biorefinery, 1-11. https://doi.org/10.1007/s13399-024-05847-0

He, L., Zhang, X., Xu, H., Xu, C., Yuan, F., Knez, Ž., Novak, Z., & Gao, Y. (2012) Subcritical water extraction of phenolic compounds from pomegranate (Punica granatum L.) seed residues and investigation into their antioxidant activities with HPLC–ABTS+ assay. Food Bioprod Process, 90(2), 215–223. https://doi.org/10.1016/j.fbp. 2011.03.003

Hoque, M., Gupta, S., Santhosh, R., Syed, I., & Sarkar, P. (2021). Biopolymer-based edible films and coatings for food applications. In Food, medical, and environmental applications of polysaccharides (pp. 81-107). Elsevier. https://doi.org/10.1016/B978-0-12-819239-9.00013-0

Ikeda, M., de Melo, A. M., Costa, B. P., Barbi, R. C. T., & Ribani, R. H. (2021). Nutritional and bioactive composition of achachairu (Garcinia humilis) seed flour: A potential ingredient at three stages of ripening. LWT, 152, 112251. https://doi.org/10.1016/j.lwt.2021.112251

Iwuagwu, M. O., Solomon, C. U., & Amanze, J. E. (2018). Physicochemical analysis and characterization of edible oil from seeds of orange (Citrus sinensis L.) and pumpkin (Cucurbita pepo L.). European Journal of Biotechnology and Bioscience, 6(4), 35-40.

Jadhav, R. M., Naik, R. M., & Dodake, S. S., (2017). Proximate composition, mineral content and oil quality of watermelon (Citrullus lanatus) seeds. Indian Journal of Agricultural Biochemistry, 30(1), 92–96. https://dx.doi.org/10.5958/0974- 4479.2017.00014.4.

Kapoor, S., Gandhi, N., Tyagi, S. K., Kaur, A., & Mahajan, B. (2020). Extraction and characterization of guava seed oil: a novel industrial byproduct. LWT, 132, 109882. https://doi.org/10.1016/j.lwt.2020.109882

Kawakami, S., Morinaga, M., Tsukamoto-Sen, S., Mori, S., Matsui, Y., & Kawama, T. (2021). Constituent characteristics and functional properties of passion fruit seed extract. Life, 12(1), 38. https://doi.org/10.3390/life12010038

Khalid, W., Ikram, A., Rehan, M., Afzal, F. A., Ambreen, S., Ahmad, M., Aziz, A., & Sadiq, A. (2021). Chemical composition and health benefits of melon seed: A Review. Pakistan Journal of Agricultural Research, 34, 309-317 https://dx.doi.org/10.17582/journal.pjar/2021/34.2.309.317

Khemakhem, M., Zarroug, Y., Jabou, K., Selmi, S., & Bouzouita, N. (2021). Physicochemical characterization of oil, antioxidant potential, and phenolic profile of seeds isolated from Tunisian pomegranate (Punica granatum L.) cultivars. Journal of Food Science, 86(3), 852-859. https://doi.org/10.1111/1750-3841.15636

Kolniak-Ostek, J., Kita, A., Miedzianka, J., Andreu-Coll, L., Legua, P., & Hernandez, F. (2020). Characterization of bioactive compounds of Opuntia ficus-indica (L.) Mill. seeds from Spanish cultivars. Molecules, 25(23), 5734. https://doi.org/10.3390/molecules25235734

Krishnamachari, H., & Nithyalakshmi, V. (2017). Phytochemical analysis and antioxidant potential of Cucumis melo seeds. International Journal of Life Sciences Research, 3, 863-867. https://doi.org/10.21276/ijlssr.2017.3.1.19

Krist, S. (2020). Pomegranate seed oil. Vegetable Fats and Oils. Springer Nature, 605-609. https://doi.org/10.1007/978-3-030-30314-3

Kumar, H., Dhalaria, R., Guleria, S., Sharma, R., Kumar, D., Verma, R., ... & Kuca, K. (2023). Non-edible fruit seeds: nutritional profile, clinical aspects, and enrichment in functional foods and feeds. Critical Reviews in Food Science and Nutrition, 1-20.

Kumar, H., Kimta, N., Guleria, S., Cimler, R., Sethi, N., Dhanjal, D. S., ... & Kuca, K. (2024). Valorization of non-edible fruit seeds into valuable products: A sustainable approach towards circular bioeconomy. Science of the Total Environment, 171142. https://doi.org/10.1016/j.scitotenv.2024.171142

Kumar, K., Srivastav, S., & Sharanagat, V. S. (2021). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics sonochemistry, 70, 105325. https://doi.org/10.1016/j.ultsonch.2020.105325

Kumar, M., Prakash, S., Sharma, N., Kumari, N., Waghmare, R., & Sharma, K. (2024). Potential of fruit seed waste for improving the sustainability of fruit processing industry. In Valorization of Fruit Seed Waste from Food Processing Industry (pp. 1-25). Academic Press. https://doi.org/10.1016/B978-0-443-15535-2.00008-6

Kumar, S. J., Prasad, S. R., Banerjee, R., Agarwal, D. K., Kulkarni, K. S., & Ramesh, K. V. (2017). Green solvents and technologies for oil extraction from oilseeds. Chemistry Central Journal, 11, 1-7. https://doi.org/10.1186/s13065-017-0238-8

Kumari, N., Kumar, M., Puri, S., Baohong, Z., Rais, N., Pundir, A., Chandran, D., Raman, P., Dhumal, S., Dey, A., Senapathy, M., Kumar, S., Pokharel, B. R., Deshmukh, V., Damale, R. D., Thiyagarajan, A., Balamurgan, V., Sathish, G., Singh, S., & Lorenzo, J. M. (2023). Peach (Prunus persica (L.) Batsch) seeds and kernels as potential plant-based functional food ingredients: A review of bioactive compounds and health-promoting activities. Food Bioscience, 54, 102914. https://doi.org/10.1016/j.fbio.2023.102914

Lagou, V. C., Konan, N. Y., & Assa, R. R. (2018). Physicochemical and nutritive characteristics of the residues deriving from the oranges (Citrus sinensis L.) consumed in Côte d’Ivoire. Journal of new sciences, 58, 3777-3785.

Li, X., Qi, B., Zhang, S., & Li, Y. (2023). Food omics revealed the effects of ultrasonic extraction on the composition and nutrition of cactus fruit (Opuntia ficus-indica) seed oil. Ultrasonics Sonochemistry, 97, 106459. https://doi.org/10.1016/j.ultsonch.2023.106459

Liu, Y., Tu, X., Lin, L., Du, L., & Feng, X. (2022). Analysis of lipids in pitaya seed oil by ultra-performance liquid chromatography–time-of-flight tandem mass spectrometry. Foods, 11(19), 2988. https://doi.org/10.3390/foods11192988

Liu, Z., de Souza, T. S., Holland, B., Dunshea, F., Barrow, C., & Suleria, H. A. (2023). Valorization of food waste to produce value-added products based on its bioactive compounds. Processes, 11(3), 840. https://doi.org/10.3390/pr11030840

Loiy, E., Hassan, A., Hasnah, M. S., Ahmed, Y., Asking, M., Koko, W. S., & Siddig, A. I. (2011). In vitro anti-microbial activities of chloroformic, hexane & ethanolic extracts of C. lanatus var. citroides. Journal of Medicinal Plants Research, 5, 1338-1344.

Loizzo, M. R., Pacetti, D., Lucci, P., Núñez, O., Menichini, F., Frega, N. G., & Tundis, R. (2015). Prunus persica var. platycarpa (Tabacchiera Peach): bioactive compounds and antioxidant activity of pulp, peel and seed ethanolic extracts. Plant Foods for Human Nutrition, 70, 331-337. https://doi.org/10.1007/s11130-015-0498-1

Lorenzo, J. M., Mousavi Khaneghah, A., Gavahian, M., Marszałek, K., Eş, I., Munekata, P. E., ... & Barba, F. J. (2019). Understanding the potential benefits of thyme and its derived products for food industry and consumer health: From extraction of value-added compounds to the evaluation of bioaccessibility, bioavailability, anti-inflammatory, and antimicrobial activities. Critical reviews in food science and nutrition, 59(18), 2879-2895. https://doi.org/10.1080/10408398.2018.1477730.

Lucarini, M., Durazzo, A., Raffo, A., Giovannini, A., & Kiefer, J. (2019). Dragon (Hylocereus megalanthus) seed oil. En M. Ramadan (Eds.), Fruit Oils: Chemistry and Functionality (pp. 577-603). Springer. https://doi.org/10.1007/978-3-030-12473-1_29

Mahato, N., Sinha, M., Sharma, K., Koteswararao, R., & Cho, M. H. (2019) Modern extraction and purification techniques for obtaining high purity foodgrade bioactive compounds and value-added co-products from citrus wastes. Foods 8(11), 523. https://doi.org/10.3390/foods8110523

Mahla, H. R., Rathore, S. S., Venkatesan, K., & Sharma, R. (2018). Analysis of fatty acid methyl esters and oxidative stability of seed purpose watermelon (Citrullus lanatus) genotypes for edible oil. Journal of food science and technology, 55, 1552-1561. https://doi.org/10.1007/s13197-018-3074-5

Mallek-Ayadi, S., Bahloul, N., & Kechaou, N. (2018). Chemical composition and bioactive compounds of Cucumis melo L. seeds: Potential source for new trends of plant oils. Process Safety and Environmental Protection, 113, 68-77. https://doi.org/10.1016/j.psep.2017.09.016

Mallek-Ayadi, S., Bahloul, N., & Kechaou, N. (2019) Cucumis melo L. seeds as a promising source of oil naturally rich in biologically active substances: compositional characteristics, phenolic compounds and thermal properties. Grasas aceites 70(1), e284. https://doi.org/10.3989/gya.0215181

Maman, R., & Yu, J. (2019). Chemical composition and particle size of grape seed flour and their effects on the characteristics of cookies. Journal of Food Research, 8(4), 111-121. https://doi.org/10.5539/jfr.v8n4p111

Manaf Yanty, N. A., Nazrim Marikkar, J. M., Nusantoro, B. P., Long, K., & Ghazali, H. M. (2014). Physico-chemical characteristics of papaya (Carica papaya L.) seed oil of the Hong Kong/Sekaki variety. Journal of Oleo Science, 63(9), 885–892. https://doi.org/10.5650/jos.ess13221

Menezes, E. G. T., Oliveira, E. R., Carvalho, G. R., Guimaraes, I. C., & Queiroz, F. (2019). Assessment of chemical, nutritional and bioactive properties of Annona crassiflora and Annona muricata wastes. Food Science and Technology, 39(2), 662-672. https://doi.org/10.1590/fst.22918

Mesquita, P. C., Rodrigues, L. G. G., Mazzutti, S., da Silva, M., Vitali, L., & Lanza, M. (2021). Intensified green-based extraction process as a circular economy approach to recover bioactive compounds from soursop seeds (Annona muricata L.). Food chemistry: X, 12, 100164. https://doi.org/10.1016/j.fochx.2021.100164

Moeini, A., Pedram, P., Fattahi, E., Cerruti, P., & Santagata, G. (2022). Edible polymers and secondary bioactive compounds for food packaging applications: Antimicrobial, mechanical, and gas barrier properties. Polymers, 14(12), 2395. https://doi.org/10.3390/polym14122395

Mohamed, H. B., Duba, K. S., Fiori, L., Abdelgawed, H., Tlili, I., Tounekti, T., & Zrig, A. (2016). Bioactive compounds and antioxidant activities of different grape (Vitis vinifera L.) seed oils extracted by supercritical CO2 and organic solvent. LWT, 74, 557-562. https://doi.org/10.1016/j.lwt.2016.08.023

Moreno Luzia, D. M., & Jorge, N. (2012). Soursop (Annona muricataL.) and sugar apple (Annona squamosa L.). Nutrition & Food Science, 42(6), 434–441. https://doi.org/10.1108/00346651211277690

Mustafa, M. A. M., Sorour, M. A. H., Mehanni, A. H. E. S., & Hussien, S. M. (2023). Amino acid profile, physico-chemical properties and fatty acids composition of some fruit seed kernels after detoxification. Chemical and Biological Technologies in Agriculture, 10(1), 37. https://doi.org/10.1186/s40538-023-00412-9

Nayak, A., Mukherjee, A., Kumar, S., & Dutta, D. (2024). Exploring the potential of jujube seed powder in polysaccharide based functional film: Characterization, properties and application in fruit preservation. International Journal of Biological Macromolecules, 260, 129450. https://doi.org/10.1016/j.ijbiomac.2024.129450

Neglo, D., Tettey, C. O., Essuman, E. K., Kortei, N. K., Boakye, A. A., Hunkpe, G., Amarah, F., Kwashie, P., & Devi, W. S. (2021). Comparative antioxidant and antimicrobial activities of the peels, rind, pulp and seeds of watermelon (Citrullus lanatus) fruit. Scientific African, 11, e00582. https://doi.org/10.1016/j.sciaf.2020.e00582

Nguyen, L. N. B., Nguyen, H. P., Tran, T. T. T., & Nguyet, T. N. M. (2022). Effects of enzymatic treatment on seed mucilage degradation and air-drying temperature on quality attributes of dragon fruit seeds (Hylocereus spp.). VNUHCM Journal of Engineering and Technology, 5(1), 1407-1416. https://doi.org/10.32508/stdjet.v5i1.946

Nirmal, N. P., Khanashyam, A. C., Mundanat, A. S., Shah, K., Babu, K. S., Thorakkattu, P., Al-Asmari, F., & Pandiselvam, R. (2023). Valorization of fruit waste for bioactive compounds and their applications in the food industry. Foods, 12(3), 556. https://doi.org/10.3390/foods12030556

Nolasco-González, Y., Hernández-Fuentes, L. M., & Montalvo González, E. (2019). Morphological and physicochemical characterization of selected soursop accessions fruits in Nayarit. Revista mexicana de ciencias agrícolas, 10(spe23), 223-237. https://doi.org/10.29312/remexca.v0i23.2023

Nordin, N. A., Abdullah, N., Caliskan, A., Pindi, W., & Hamzah, Y. (2024). Jackfruit seed as flour alternative in cookies: a consumer acceptability study, Journal of Tourism, Hospitality and Culinary Arts, 16(1), 41-54.

Nowicka, P., & Wojdyło, A. (2019). Content of bioactive compounds in the peach kernels and their antioxidant, anti-hyperglycemic, anti-aging properties. European Food Research and Technology, 245(5), 1123-1136. https://doi.org/10.1007/s00217-018-3214-1

Ocampo, J., Arias, J. C., & Urrea, R. (2015). Colecta e identificación de genotipos élite de granadilla (Passiflora ligularis Juss.) en Colombia. Revista Colombiana de Ciencias Hortícolas, 9(1), 9-23. https://doi.org/10.17584/rcch.2015v9i1.3742

Oikeh, E. I. (2014). Phenolic content and in vitro antioxidant activities of sweet orange (Citrus sinensis L.) fruit wastes. Archives of Basic and Applied Medicine, 2(2), 119-126.

Oikeh, E. I., Ayevbuomwan, M., Irabor, F., Oikeh, A. O., Oviasogie, F. E., & Omoregie, E. S. (2020). Evaluation of the phenolic content, antioxidant and antimicrobial activities of oil and non-oil extracts of Citrus sinensis (L.) Osbeck seeds. Preventive Nutrition and Food Science, 25(3), 280-285. https://doi.org/10.3746/pnf.2020.25.3.280

Okibe, F. G., Hwork, D. J., Saidu, A., Echiola, S., Ogbeh, E., Adagayi, M. A., ... & Adoga, S. O. (2023). Proximate, mineral and antinutrient composition of avocado (Persea Americana) seeds and peels. Nigerian Annals of Pure and Applied Sciences, 6(1). https://napas.org.ng/index.php/napas/article/view/355

Olamide, A. A., Olayemi, O. O., Demetrius, O. O., Olatoye, O. J., & Kehinde, A. A. (2011). Effects of methanolic extract of Citrullus lanatus seed on experimentally induced prostatic hyperplasia. European Journal of Medicinal Plants, 1(4), 171-179.

Olubunmi, I. P., Olajumoke, A. A., Bamidele, J. A., & Omolara, O. F. (2019). Phytochemical composition and in vitro antioxidant activity of golden melon (Cucumis melo L.) seeds for functional food application. International Journal of Biochemistry Research & Review, 25(2), 1-13. https://doi.org/10.9734/ijbcrr/2019/v25i230070

Onuoha, C. H., Nwachukwu, C. C., Nwachukwu, R. T., Nwogu, C. G., Chukwudoruo, C. S., & Ujowundu, F. N. (2021). Comparative evaluation of proximate composition and anti-sickling potential of Annona muricata Linn seeds and leaves. AROC in Natural Products Research, 1(2), 29-35. https://doi.org/10.53858/arocnpr01022935

Orak, H. H., Bahrisefit, İ. Ş., & Şabudak, T. (2019). Antioxidant activity of extracts of soursop (Annona muricata L.) leaves, fruit pulps, peels, and seeds. Polish Journal of Food and Nutrition Sciences, 69(4), 359-366. https://doi.org/10.31883/pjfns/112654

Pathak, P. D., Mandavgane, S. A., & Kulkarni, B. D. (2019). Waste to wealth: a case study of papaya peel. Waste and Biomass Valorization, 10, 1755-1766. https://doi.org/10.1007/s12649-017-0181-x

Patra, A., Abdullah, S., & Pradhan, R. C. (2022). Review on the extraction of bioactive compounds and characterization of fruit industry by-products. Bioresources and Bioprocessing, 9(1), 1-25. https://doi.org/10.1186/s40643-022-00498-3

Paul, A., & Radhakrishnan, M. (2020). Pomegranate seed oil in food industry: Extraction, characterization, and applications. Trends in Food Science & Technology, 105, 273-283. https://doi.org/10.1016/j.tifs.2020.09.014

Peixoto, C. M., Dias, M. I., Alves, M. J., Calhelha, R. C., Barros, L., Pinho, S. P., & Ferreira, I. C. (2018). Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food chemistry, 253, 132-138. https://doi.org/10.1016/j.foodchem.2018.01.163

Pereira, M. G., Hamerski, F., Andrade, E. F., Scheer, A. D. P., & Corazza, M. L. (2017). Assessment of subcritical propane, ultrasound-assisted and Soxhlet extraction of oil from sweet passion fruit (Passiflora alata Curtis) seeds. The Journal of Supercritical Fluids, 128, 338-348. https://doi.org/10.1016/j.supflu.2017.03.021

Petchsomrit, A., McDermott, M. I., Chanroj, S., & Choksawangkarn, W. (2020). Watermelon seeds and peels: fatty acid composition and cosmeceutical potential. Oléagineux Corps gras Lipides, 27(54), 1-9. https://doi.org/10.1051/ocl/2020051

Petkova, Z., & Antova, G. (2015). Proximate composition of seeds and seed oils from melon (Cucumis melo L.) cultivated in Bulgaria. Cogent Food & Agriculture, 1(1), 1018779. https://doi.org/10.1080/23311932.2015.1018779

Raja, M. P., Praveen Raja, M., Karthiayani, A., Selvan, P., & Nithyalakshmi, V. (2019). Production of extruded snacks by utilization of watermelon (Citrullus vulgaris) seed flour. Journal of Postharvest Technology, 7(3), 56-67.

Ramaiya, S. D., Bujang, J. S., & Zakaria, M. H. (2018). Nutritive values of passion fruit (Passiflora species) seeds and its role in human health. Journal of Agriculture Food and Development, 4(1), 23-30. https://doi.org/10.30635/2415-0142.2018.04.4

Ray, A., Dubey, K. K., Marathe, S. J., & Singhal, R. (2023). Supercritical fluid extraction of bioactives from fruit waste and its therapeutic potential. Food Bioscience, 52, 102418. https://doi.org/10.1016/j.fbio.2023.102418

Reda, T. H., & Atsbha, M. K. (2019). Nutritional composition, antinutritional factors, antioxidant activities, functional properties, and sensory evaluation of cactus pear (Opuntia ficus-indica) seeds grown in tigray region, Ethiopia. International journal of food science, 2019, 1-7. https://doi.org/10.1155/2019/5697052

Redondo, D., Gimeno, D., Calvo, H., Venturini, M. E., Oria, R., & Arias, E. (2021). Antioxidant activity and phenol content in different tissues of stone fruits at thinning and at commercial maturity stages. Waste and Biomass Valorization, 12, 1861-1875. https://doi.org/10.1007/s12649-020-01133-y

Ribéreau-Gayon, P., Dubourdieu, D., Donèche, B., & Lonvaud, A. (Eds.). (2006). Handbook of enology, Volume 1: The microbiology of wine and vinifications (Vol. 1). John Wiley & Sons.

Rodrigues, L. G. G., Mazzutti, S., Vitali, L., Micke, G. A., & Ferreira, S. R. S. (2019). Recovery of bioactive phenolic compounds from papaya seeds agroindustrial residue using subcritical water extraction. Biocatalysis and Agricultural Biotechnology, 22, 101367. https://doi.org/10.1016/j.bcab.2019.101367

Rodríguez-Blázquez, S., Gómez-Mejía, E., Rosales-Conrado, N., León-González, M. E., García-Sánchez, B., & Miranda, R. (2023). Valorization of prunus seed oils: Fatty acids composition and oxidative stability. Molecules, 28(20), 7045. https://doi.org/10.3390/molecules28207045

Roobab, U., & Maqsood, S. (2024). Recent developments on utilising diverse plant seed flours as novel functional ingredients for noodle formulation and their impact on quality attributes. International Journal of Food Science & Technology, 59(2), 1082-1093. https://doi.org/10.1111/ijfs.16737

Roy, S., Zhang, W., Biswas, D., Ramakrishnan, R., & Rhim, J. W. (2023). Grapefruit seed extract-added functional films and coating for active packaging applications: A review. Molecules, 28(2), 730. https://doi.org/10.3390/molecules28020730

Sahu, P. K., Cervera-Mata, A., Chakradhari, S., Singh Patel, K., Towett, E. K., Quesada-Granados, J. J., ... & Rufián-Henares, J. A. (2022). Seeds as potential sources of phenolic compounds and minerals for the Indian population. Molecules, 27(10), 3184. https://doi.org/10.3390/molecules27103184

Saleem, M., Javed, F., Asif, M., Kashif Baig, M., & Arif, M. (2019). HPLC analysis and in vivo renoprotective evaluation of hydroalcoholic extract of Cucumis melo seeds in gentamicin-induced renal damage. Medicina, 55(4), 107. https://doi.org/10.3390/medicina55040107

Sánchez-Salcedo, E. M., Sendra, E., Carbonell-Barrachina, Á. A., Martínez, J. J., & Hernández, F. (2016). Fatty acids composition of Spanish black (Morus nigra L.) and white (Morus alba L.) mulberries. Food Chemistry, 190, 566–571. https://doi.org/10.1016/j.foodchem. 2015.06.008.

Santos, O. V. D., Vieira, E. L. S., Soares, S. D., Conceição, L. R. V. D., Nascimento, F. D. C. A. D., & Teixeira-Costa, B. E. (2020). Utilization of agroindustrial residue from passion fruit (Passiflora edulis) seeds as a source of fatty acids and bioactive substances. Food Science and Technology, 41(1), 218-225. https://doi.org/10.1590/fst.16220

Santos, T. R. J., Barbosa, P. F., Rodrigues, H. A., Narain, N., & de Aquino Santana, L. L. (2019). Granadilla seed extract as antimicrobial and bioactive compounds source: mathematical modelling of extraction conditions. Quality Assurance and Safety of Crops & Foods, 11(2), 157-170. https://doi.org/10.3920/QAS2018.1315

Santos, T. R., Feitosa, P. R., Gualberto, N. C., Narain, N., & Santana, L. C. (2021). Improvement of bioactive compounds content in granadilla (Passiflora ligularis) seeds after solid-state fermentation. Food Science and Technology International, 27(3), 234-241. https://doi.org/10.1177/1082013220944009

Schinas, P., Zannikos, F., Anastopoulos, G., Karonis, D., Voulgaraki, S., Gourniezaki, A., Zannikou, Y., & Kalligeros, S. (2017). Converting apricot seed oil (Prunus armeniaca) and peach seed oil (Prunus persica) into biodiesel. SciFed Journal of Biofuel and Bioenergitcs, 1(1), 1-9.

Senrayan, J., & Venkatachalam, S. (2018). Solvent-assisted extraction of oil from papaya (Carica papaya L.) seeds: evaluation of its physiochemical properties and fatty-acid composition. Separation Science and Technology, 53(17), 1–8. https://doi.org/10.1080/01496395.2018.1480632

Serra, J. L., da Cruz Rodrigues, A. M., de Freitas, R. A., de Almeida Meirelles, A. J., Darnet, S. H., & da Silva, L. H. M. (2019). Alternative sources of oils and fats from Amazonian plants: Fatty acids, methyl tocols, total carotenoids and chemical composition. Food research international, 116, 12-19. https://doi.org/10.1016/j.foodres.2018.12.028

Shahid, I., & Dildar, A. (2011). Nutritional and physicochemical studies on fruit pulp, seed and shell of indigenous Prunus persica. Journal of Medicinal plants research, 5(16), 3917-3921.

Sharma, K., & Akansha, C. E. (2018). Comparative studies of proximate, mineral and phytochemical compositions of pomegranate (Punica granatum) in peel, seed and whole fruit powder. Methods, 3(2), 192-196.

Si, X., Lyu, S., Hussain, Q., Ye, H., Huang, C., Li, Y., Huang, J., Chen, J., & Wang, K. (2023). Analysis of Delta (9) fatty acid desaturase gene family and their role in oleic acid accumulation in Carya cathayensis kernel. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1193063

Siano, F., Straccia, M. C., Paolucci, M., Fasulo, G., Boscaino, F., & Volpe, M. G. (2015). Physico‐chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils. Journal of the Science of Food and Agriculture, 96(5), 1730-1735. https://doi.org/10.1002/jsfa.7279

Siddiqui, S. A., Farooqi, M. Q. U., Bhowmik, S., Zahra, Z., Mahmud, M. C., Assadpour, E., Gan, R. Y., Kharazmi, M. S., & Jafari, S. M. (2023). Application of micro/nano-fluidics for encapsulation of food bioactive compounds-principles, applications, and challenges. Trends in Food Science & Technology, 136, 64-75. https://doi.org/10.1016/j.tifs.2023.03.025

Silva, L. D. O., Ranquine, L. G., Monteiro, M., & Torres, A. G. (2019). Pomegranate (Punica granatum L.) seed oil enriched with conjugated linolenic acid (cLnA), phenolic compounds and tocopherols: Improved extraction of a specialty oil by supercritical CO2. The Journal of Supercritical Fluids, 147, 126-137. https://doi.org/10.1016/j.supflu.2019.02.019

Simeon, E. O., Amamilom, N. S., & Azuka, I. W. (2018). Metal assessment and phytochemical screening of orange fruit (Citrus sinensis) seeds and peels. Journal of Pharmacognosy and Phytochemistry, 7(3), 709-714.

Socas-Rodríguez, B., Álvarez-Rivera, G., Valdés, A., Ibáñez, E., & Cifuentes, A. (2021). Food by-products and food wastes: Are they safe enough for their valorization?. Trends in Food Science & Technology, 114, 133-147. https://doi.org/10.1016/j.tifs.2021.05.002

Sugiharto, S. (2020). Papaya (Carica papaya L.) seed as a potent functional feedstuff for poultry–A review. Veterinary World, 13(8), 1613-1619. https://doi.org/10.14202/vetworld.2020.1613-1619

Sushmitha, H. S., Roy, C. L., Gogoi, D., Velagala, R. D., Nagarathna, A., Balasubramanian, S., & Rajadurai, M. (2018). Phytochemical and pharmacological studies on Hylocereus undatus seeds: An in vitro approach. World Journal of Pharmacological Research, 7(14), 986-1006. https://doi.org/10.20959/wjpr201814-12957

Tabiri, B., Agbenorhevi, J. K., Wireko-Manu, F. D., & Ompouma, E. I. (2016). Watermelon seeds as food: Nutrient composition, phytochemicals and antioxidant activity. International Journal of Nutrition and Food Sciences, 5(2), 139-144. https://doi.org/10.11648/j.ijnfs.20160502.18

Taborda, J. A. V., Arango, W. M., Arteaga, J. J. M., & Almonacid, C. M. G. (2021). Encapsulation of bioactive compounds from byproducts of two species of passionflowers: evaluation of the physicochemical properties and controlled release in a gastrointestinal model. Heliyon, 7(7). https://doi.org/10.1016/j.heliyon.2021.e07627

Tan, W. K., Lee, S. Y., Lee, W. J., Hee, Y. Y., Abedin, N. H. Z., Abas, F., & Chong, G. H. (2021). Supercritical carbon dioxide extraction of pomegranate peel-seed mixture: Yield and modelling. Journal of Food Engineering, 301, 110550. https://doi.org/10.3390/foods11121806

Tiencheu, B., Claudia Egbe, A., Achidi, A. U., Ngongang, E. F. T., Tenyang, N., Tonfack Djikeng, F., & Tatsinkou Fossi, B. (2021). Effect of oven and sun drying on the chemical properties, lipid profile of soursop (Annona muricata) seed oil, and the functional properties of the defatted flour. Food Science & Nutrition, 9(8), 4156-4168. https://doi.org/10.1002/fsn3.2380

Ünver, A. (2023). Antioxidant properties, oxidative stability, and fatty acid profile of pitaya fruit (Hylocereus polyrhizus and Hylocereus undatus) seeds cultivated in Turkey. BioResources, 18(2), 3342-3356. https://doi.org/10.15376/biores.18.2.3342-3356

Vardanega, R., Fuentes, F. S., Palma, J., Bugueño-Muñoz, W., Cerezal-Mezquita, P., & Ruiz-Domínguez, M. C. (2023). Valorization of granadilla waste (Passiflora ligularis, Juss.) by sequential green extraction processes based on pressurized fluids to obtain bioactive compounds. The Journal of Supercritical Fluids, 194, 105833. https://doi.org/10.1016/j.supflu.2022.105833

Villalobos-Gutiérrez, M. G., Schweiggert, R. M., Carle, R., & Esquivel, P. (2012). Chemical characterization of Central American pitaya (Hylocereus sp.) seeds and seed oil. Cyta-Journal of Food, 10(1), 78-83. https://doi.org/10.1080/19476337.2011.580063

Wang, D., Xiao, H., Lyu, X., Chen, H., & Wei, F. (2023). Lipid oxidation in food science and nutritional health: A comprehensive review. Oil Crop Science, 8(1), 35-44. https://doi.org/10.1016/j.ocsci.2023.02.002

Wani, A. A., Sogi, D. S., Singh, P., Wani, I. A., & Shivhare, U. S. (2011). Characterisation and functional properties of watermelon (Citrullus lanatus) seed proteins. Journal of the Science of Food and Agriculture, 91(1), 113-121. https://doi.org/10.1002/jsfa.4160

Wójcik, M., Bieńczak, A., Woźniak, P., & Różyło, R. (2023). Impact of watermelon seed flour on the physical, chemical, and sensory properties of low-carbohydrate, high-protein bread. Processes, 11(12), 3282. https://doi.org/10.3390/pr11123282

Xu, B., Wei, B., Ren, X., Liu, Y., Jiang, H., Zhou, C., Ma, H., Chalamaiah, M., Liang, Q., & Wang, Z. (2018). Dielectric pretreatment of rapeseed 1: influence on the drying characteristics of the seeds and physicochemical properties of cold-pressed oil. Food Bioprocess Technol., 11, 1236–1247. https://doi.org/10.1007/s11947-018-2091-8

Yamamoto, T., Sato, A., Takai, Y., Yoshimori, A., Umehara, M., Ogino, Y., ... & Tanuma, S. I. (2019). Effect of piceatannol-rich passion fruit seed extract on human glyoxalase I–mediated cancer cell growth. Biochemistry and Biophysics Reports, 20, 100684. https://doi.org/10.1016/j.bbrep.2019.100684

Yepes, A., Ochoa-Bautista, D., Murillo-Arango, W., Quintero-Saumeth, J., Bravo, K., & Osorio, E. (2021). Purple passion fruit seeds (Passiflora edulis f. edulis Sims) as a promising source of skin anti-aging agents: Enzymatic, antioxidant and multi-level computational studies. Arabian Journal of Chemistry, 14(1), 102905. https://doi.org/10.1016/j.arabjc.2020.11.011

Younis, I. Y., Ibrahim, R. M., El-Halawany, A. M., Hegazy, M. E. F., Efferth, T., & Mohsen, E. (2023). Chemometric discrimination of Hylocereus undulatus from different geographical origins via their metabolic profiling and antidiabetic activity. Food Chemistry, 404, 134650. https://doi.org/10.1016/j.foodchem.2022.134650

Zhang, W., Pan, Y. G., Huang, W., Chen, H., & Yang, H. (2019). Optimized ultrasonic‐assisted extraction of papaya seed oil from Hainan/Eksotika variety. Food Science & Nutrition, 7(8), 2692-2701. https://doi.org/10.1002/fsn3.1125

Zhang, X., Liang, J., Lin, X., Chen, J., & Luo, X. (2024). A comprehensive review on the composition, processing methods, and sustainable utilization of tropical fruit seeds in food industry. Food Frontiers. 1-26. https://doi.org/10.1002/fft2.493

Zia, S., Khan, M. R., Mousavi Khaneghah, A., & Aadil, R. M. (2023). Characterization, bioactive compounds, and antioxidant profiling of edible and waste parts of different watermelon (Citrullus lanatus) cultivars. Biomass Conversion and Biorefinery, 1-13. https://doi.org/10.1007/s13399-023-04820-7

Descargas

Publicado

2025-03-24

Cómo citar

Paucar-Menacho, L. M. ., Campos-Rodriguez, J. ., Moreno-Rojo, C. ., Chuqui-Diestra, S. R. ., & Eusebio-Lara, S. . (2025). Semillas como subproducto del procesamiento de frutas en la industria de alimentos: Composición proximal, perfil fitoquímico y aprovechamiento en el marco de la economía circular. Scientia Agropecuaria, 16(2), 215-234. https://doi.org/10.17268/sci.agropecu.2025.018

Número

Sección

Artículos de Revisión

Artículos más leídos del mismo autor/a