Use of Andean pseudocereals in beer production


  • Luz Maria Paucar-Menacho Departamento de Ingeniería Agroindustrial y Agrónoma, Universidad Nacional del Santa, Av. Universitaria s/n Urb, Bella Mar, Nuevo Chimbote, Ancash
  • Rebeca Salvador-Reyes Facultad de Ingeniería, Universidad Tecnológica del Perú (UTP), Lima.
  • William Esteward Castillo-Martinez Departamento de Ingeniería Agroindustrial y Agrónoma, Universidad Nacional del Santa, Av. Universitaria s/n Urb, Bella Mar, Nuevo Chimbote, Ancash.
  • Wilson Daniel Símpalo-López Departamento de Ingeniería Agroindustrial y Agrónoma, Universidad Nacional del Santa, Av. Universitaria s/n Urb, Bella Mar, Nuevo Chimbote, Ancash.
  • Anggie Verona-Ruiz Departamento de Ingeniería Agroindustrial y Agrónoma, Universidad Nacional del Santa, Av. Universitaria s/n Urb, Bella Mar, Nuevo Chimbote, Ancash.
  • Alicia Lavado-Cruz Departamento de Ingeniería Agroindustrial y Agrónoma, Universidad Nacional del Santa, Av. Universitaria s/n Urb, Bella Mar, Nuevo Chimbote, Ancash.
  • Soledad Quezada-Berrú Departamento de Ingeniería Agroindustrial y Agrónoma, Universidad Nacional del Santa, Av. Universitaria s/n Urb, Bella Mar, Nuevo Chimbote, Ancash.
  • William López-Rodriguez Departamento de Ingeniería Agroindustrial y Agrónoma, Universidad Nacional del Santa, Av. Universitaria s/n Urb, Bella Mar, Nuevo Chimbote, Ancash.


Palabras clave:

Peruvian grains, functional beer, food safety, gluten-free, bio-grains


Beer is one of the most consumed alcoholic beverages worldwide; however, with consumers more aware of food's environmental and nutritional benefits, there is a demand for more sustainable and value-added products. Andean pseudocereals (APS) are becoming a trend as gluten-free grains with excellent nutritional and nutraceutical value. Cultivated under the extreme climate conditions of the Peruvian Andes, APS seeds are an excellent source of starch, fiber, proteins, minerals, vitamins, and bioactive compounds such as phenolic acids and flavonoids with antioxidant capacity that provide potential health benefits. This review is a compilation of the information and studies on the general characteristics and potential of the main APS as quinoa, amaranth, and cañihua for beer production. In addition, current evidence of the malting process in APS and its effects on beer's nutritional, functional, and sensory properties are also provided. Based on the research supporting the pseudocereals inclusion for the formulation of foods for celiac people, this review also looks at recent advances in applying APS to develop traditional and gluten-free (GF) beers. Finally, APS's economic, cultural, and social importance in the brewing industry is highlighted to promote the creation and innovation of fermentative products based on their bioactive compounds, thus achieving better commercial exploration of these ancestral grains.


Abderrahim, F., Huanatico, E., Repo-Carrasco-Valencia, R., Arribas, S. M., Gonzalez, M. C., & Condezo-Hoyos, L. (2012). Effect of germination on total phenolic compounds, total antioxidant capacity, Maillard reaction products and oxidative stress markers in canihua (Chenopodium pallidicaule). Journal of Cereal Science, 56(2), 410-417.

Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., González, M. C., y Condezo-Hoyos, L. (2015). “Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano”. Food Chemistry, 183(15), 83-90.

Aguilar, J., Miano, A. C., Obregón, J., Soriano-Colchado, J., & Barraza-Jáuregui, G. (2019). Malting process as an alternative to obtain high nutritional quality quinoa flour. Journal of Cereal Science, 90, 102858.

Aluwi, N. A., Murphy, K. M., & Ganjyal, G. M. (2017). Physicochemical Characterization of Different Varieties of Quinoa. Cereal Chemistry Journal, 94(5), 847-856.

Alvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2010). Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science and Technology, 21, 106e113.

Asher, A., Galili, S., Whitney, T., & Rubinovich, L. (2020). The potential of quinoa (Chenopodium quinoa) cultivation in Israel as a dual-purpose crop for grain production and livestock feed. Scientia Horticulturae, 272, 109534.

Baginski, J., & Bell, T. L. (2011). Under-tapped An analysis of craftbrewing in the southern United States. Southeastern Geographer, 51(1),165–185.

Bamforth, C., Russell, I., & Stewart, G. (2009). Beer: A quality perspective. London: Academic Press.

Bathgate, G.N. (2016). A review of malting and malt processing for whisky distillation. J. Inst. Brew. 122, 197–211.

Bellut, K., Michel, M., Zarnkow, M., Hutzler, M., Jacob, F., Lynch, K. M., & Arendt, E. K. (2019). On the suitability of alternative cereals, pseudocereals and pulses in the production of alcohol-reduced beers by non-conventional yeasts. European Food Research and Technology, 245(11), 2549-2564.

Belton, P. S., Taylor, J. R. N., Taylor, J. R. N., & Parker, M. L. (2002). Quinoa. In Pseudocereals and Less Common Cereals (pp. 93–122). Springer Berlin Heidelberg.

Betalleluz-Pallardel, I., Inga, M., Mera, L., Pedreschi, R., Campos, D., & Chirinos, R. (2017). Optimisation of extraction conditions and thermal properties of protein from the Andean pseudocereal cañihua (Chenopodium pallidicaule Aellen). International Journal of Food Science & Technology, 52(4), 1026-1034.

Bogdan, P. & Kordialik-Bogacka, E. (2017). Alternativas a la malta en la elaboración de cerveza. Trends in Food Science & Techn, 65, 1–9.

Bradford, J. (1995). Water relations in seed germination. En: Kigel, J. Y Galili, G. (Editores). Marcell Dekker Inc., New York. P 352-396

Briggs, D. E., Hough, J. S., Stevens, R., & Young, T. W. (1981). The technology of malting and kilning. Malting and Brewing Science. London: Chapman & Hall, pp. 145-192.

Buiatti, S., Bertoli, S., & Passaghe, P. (2018). Influence of gluten-free adjuncts on beer colloidal stability. European Food Research and Technology, 244(5), 903–912.

Bustillos, G. M., Grove, T. K., Laguna Loayza, M. M., & Fernandini Umbert, R. (2018). Cerveza artesanal sin gluten. Universidad Peruana de Ciencias Aplicadas (UPC)., Lima, Perú.

Cabras, I. (2018). Beer on! The evolution of micro-and craft brewing in theUK. In C. Garavaglia & J. Swinnen (Eds.), Economic perspectives on craftbeer: A revolution in the global beer industry (pp. 373–396). London, England: Palgrave MacMillan.

Campos, D., Chirinos, R., Gálvez Ranilla, L., & Pedreschi, R. (2018). Bioactive Potential of Andean Fruits, Seeds, and Tubers. In Advances in Food and Nutrition Research (Vol. 84, pp. 287–343). Academic Press Inc.

Cantrell, P. A. (2008). Beer and Ale. In The Cambridge World History of Food (pp. 619–625). Cambridge University Press.

Carciochi, R. A., Dimitrov, K., & Galván D´Alessandro, L. (2016). Effect of malting conditions on phenolic content, Maillard reaction products formation, and antioxidant activity of quinoa seeds. Journal of Food Science and Technology, 53(11), 3978-3985.

Carvalho, D. O., Correia, E., Lopes, L., & Guido, L. F. (2014) Further insights into the role of melanoidins on the antioxidant potential of barley malt. Food Chemistry, 160, 127-133.

Castañeda, R. (2015). Elaboración de cerveza tipo ale en base a un sustrato de quinua (Chenopodium quinoa willd) y cebada (Hordeum vulgare). 74.

Cela, N., Galgano, F., Perretti, G., Cairano, Maria Di, Tolve, R., Condelli, N. (2022). Assessment of brewing attitude of unmalted cereals and pseudocereals for gluten free beer production. Food Chemistry, 384, 132621.

Choque-Quispe, D., Ligarda-Samanez, C. A., Ramos-Pacheco, B. S., Leguía-Damiano, S., Calla-Florez, M., Zamalloa-Puma, L. M., & Colque-Condeña, L. (2021). Phenolic Compounds, Antioxidant Capacity, and Protein Content of Three Varieties of Germinated Quinoa (Chenopodium quinoa Willd). Ingeniería e Investigación, 41(2), e89831.

Colmenares de Ruiz, A. S., & Bressani, R. (1990), Effect of germination on the chemical composition and nutritive value of amaranth grain. Cereal Chem., 67, 19-22.

Combe, A. L., Ang, J. K., & Bamforth, C. W. (2013). Impactos positivos y negativos de las maltas especiales en la espuma de cerveza: una comparación de varios productos de cereales por sus propiedades espumantes. Revista de ciencia de la alimentación y la agricultura, 93(9), 2094-2101.

DATAMARK. (n.d.). Retrieved September 24, 2020, from

Desai, B. (2004). Seeds handbook: Processing and storage (2nd ed.). New York.

Deželak, M., Zarnkow, M., Becker, T., & Košir, I. J. (2014). Processing of bottom-fermented gluten-free beer-like beverages based on buckwheat and quinoa malt with chemical and sensory characterization. J. of the Institute of Brewing, 120(4), 360-370.

di Fabio, A., & Parraga, G. (2016). Origin, Production and Utilization of Pseudocereals. In Pseudocereals: Chemistry and Technology, 1, 1-27.

Duarte Alonso, A., Kok, S., & O’Shea, M. (2020). Peru’s emerging craft‐brewing industry and its implications for tourism. International Journal of Tourism Research, 23(3), 319-331.

Durga, C. G., Vidyalakshmi, R., Baskaran, N., & Tito, M. (2022). Influence of Pichia myanmarensis in fermentation to produce quinoa based non-alcoholic beer with enhanced antioxidant activity. Journal of cereal Science, 103, 103390.

Elkhalifa, A. E.O., Bernhardt, R. (2010). Influence of grain germination on functional properties of sorghum flour. Food Chemistry. 121:387–392.

Espinoza, Z. N. B. (2016). Estudio de las condiciones de malteado de maíz (Zea mays) y quinua (Chenopodium quinoa) que favorezcan su aptitud cervecera (Tesis de Licenciatura). Escuela Politecnica Nacional, Quito.

FAO (2004). Vitamin and mineral requirements in human nutrition (2nd ed.). Bangkok, Thailand.

FAOSTAT. (2020). Food and agriculture data [database]. Available in

Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant’Ana, H. M., Chaves, J. B. P., & Coimbra, J. S. D. R. (2017). Quinoa: Nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 57(8), 1618-1630.

Fix, G. (2000). Principles of Brewing Science, 2nd Edition. Brewers. Publications: Boulder, CO.

Gómez-Álvarez, S. (2004). El hierro en la alimentación. Farmacia profesional, 18(2), 54-57.

Gómez-López, J. (2020). Sensory evaluation of beer. In The Craft Brewing Handbook (pp. 191–215). Elsevier.

Gorinstein, S., Pawelzik, E., Delgado-Licon, E., Haruenkit, R., Weisz, M., & Trakhtenberg, S. (2002). Characterisation of pseudo-cereal and cereal proteins by protein and amino acid analyses. Journal of the Science of Food and Agriculture, 82(8), 886–891.

Gross, R., Koch, F., Malaga, I., de Miranda, A.F., Schoeneberger, H., & Trugo, L.C. (1989). Chemical composition and protein quality of some local Andean food sources. Food Chemistry, 34, 25–34.

Gupta, J., Barzotto, M., & Khorasgani, A. (2018). Does size matter inpredicting SMEs failure? International Journal of Finance & Economics, 23(4), 571-605

Ha, K.S., Jo, S.H, Mannam, V., & Known, Y. I. (2016). Simulation of phenolics, Antioxidant and α-Glucosidase Inhibitory Activities During Barley (Hordeum vulgare L.) Seed Germination. Plant Foods for Human Nutrition, 71, 211–2017.

Habschied, K., Košir, I. J., Krstanovic, V., Kumric, G., Mastanjevic, K. (2021). Beer Polyphenols. Bitterness, Astringency, and Off-Flavors. Beverages, 7, 38.

Hager, A. S., Taylor, J. P., Waters, D. M., & Arendt, E. K. (2014). Gluten free beer–A review. Trends in Food Science & Technology, 36, 44-54.

Haros, C. M., & Schonlechner, R. (2016). Pseudocereals: Chemistry and Technology. In Pseudocereals: Chemistry and Technology. John Wiley & Sons, Ltd.

Harrison, M. A., & Albanese, J. B. (2019). Beer/Brewing. In Encyclopedia of Microbiology (pp. 467–477). Elsevier.

Hejazi, N. S., & Orsat, V. (2016). Optimization of the malting process for nutritional improvement of finger millet and amaranth flours in the infant weaning food industry. International Journal of Food Sciences and Nutrition, 68(4), 429–441.

Howe, S. (2020). Raw materials. In The Craft Brewing Handbook (pp. 1–46). Elsevier.

Huamaní, F., Tapia, M., Portales, R., Doroteo, V., Ruiz, C., Rojas, R. (2020). Proximate analysis, phenolics, betalains, and antioxidant activities of three ecotypes of kañiwa (Chenopodium pallidicaule aellen) from Perú. Pharmacologyonline.

INIA. (2020). Proyecto 150-PI: Obtención de una nueva variedad de kiwicha grano amiláceo comprobada y adaptada a las condicio-nes agroecológicas de la sierra. Ponencia INIA - Programa Nacional de Cereales, Granos Andinos y Leguminosas. Estación Experimental Agraria Canaán, Ayacucho.

James, L. E. A. (2009). Quinoa (Chenopodium quinoa Willd.): composi-tion, chemistry, nutritional, and functional properties. Adv Food Nutr Res, 58, 1-31.

Juan, M. O., & Siguas, R. (2019). Diferencias de la constante térmica en las fases fenológicas de dos variedades de amaranto (Amaranthus caudatus. L): precoz y tardía en la microcuenca del distrito de Ayacucho Línea de investigación: Biodiversidad. (Tesis). Universidad Nacional de Huancavelica. Perú. 140.

Kalita, D., Sarma, B. & Srivastava, B. (2017). Influencia de las condiciones de germinación en el potencial de malteado de arrozales de amilosa normal y baja y cambios en la actividad enzimática y propiedades físico-químicas. Food Chemistry, 220, 67–75.

Kerpes, R., Fischer, S., & Becker, T. (2017). The production of gluten-free beer: Degradation of hordeins during malting and brewing and the application of modern process technology focusing on endogenous malt peptidases. Trends in Food Science & Technology, 67, 129–138.

Kordialik‐Bogacka, E., Bogdan, P., & Ciosek, A. (2019). Effects of quinoa and amaranth on zinc, magnesium and calcium content in beer wort. International Journal of Food Science & Technology, 54(5), 1706-1712.

Kordialik-Bogacka, E., Bogdan, P., Pielech-Przybylska, K., & Micha-łowska, D. (2018). Suitability of unmalted quinoa for beer production. Journal of the Science of Food and Agriculture, 98(13), 5027–5036.

Lamothe, L. M., Srichuwong, S., Reuhs, B. L., & Hamaker, B. R. (2015). Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chemistry, 167, 490e496.

Lopez, R. W., & Ramirez, G. J. (2018). Efecto del tiempo y temperatura del malteado de quinua (Chenopodium quinoa) en la calidad de una cerveza artesanal Red Ale complementado con malta base pilsen y malta caramelo (trabajo de titulación). Universidad Nacional del Santa, Chimbote, Perú.

Mäkinen, O. E., Zannini, E., & Arendt, E. K. (2013). Germination of oat and quinoa and evaluation of the malts as gluten free baking ingredients. Plant Foods for Human Nutrition, 68(1), 90–95.

Mamani, C., & Carlos, J. (s. f.). Plan de negocio para la producción y comercialización de cerveza artesanal con identidad peruana. 163 pp.

Márquez, F. A. J. (2015). Elaboración de una cerveza orgánica a partir de la quinoa (Chenopodium quinoa). (Trabajo de titulación). UTMACH, Unidad Académica de Ciencias Química y de la Salud, Machala, Ecuador.

Martínez, S., & Tuano, M. L. (2018). Análisis sensorial en adultos de la cerveza artesanal elaborada con Chenopodium quinoa Willd (quinua), Oxalis tuberosa (oca) y Hordeum vulgare (cebada). Tesis Licenciatura, Universidad Inca Garcilaso de la Vega.

Martínez-Villaluenga, C., Peñas, E., & Hernández-Ledesma, B. (2020). Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. In Food and Chemical Toxicology (Vol. 137, p. 111178). Elsevier Ltd.

Martins, S., Martins, S. I. F. S., Jongen, W. M. F. (2001). A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Science Technology, 11, 364–373.

Mbithi-Mwikya, S., Van Camp, J., Yiru Y. & Huyghebaert, A. (2000). Nutrient and antinutrient changes in finger millet (Eleusine coracan) during sprouting. LWT - Food Science Technology, 33, 9-14.

Meo, B., Freeman, G., Marconi, O., Booer, C., Perretti, G., & Fantozzi, P. (2011). Behaviour of Malted Cereals and Pseudo-Cereals for Gluten-Free Beer Production. Journal of the Institute of Brewing, 117(4), 541-546.

MINAGRI. (2020). Quinoa market analysis (2015-2020). Unidad de Inteligencia Comercial - Sierra y Selva Exportadora.

MINAG. (2016). Peruvian Ministry of agriculture and irrigation

MINCETUR. (2018). Craft beer in Peru.

Modgil, R., & Sood, P. (2017). Effect of Roasting and Germination on Carbohydrates and Anti-nutritional Constituents of Indigenous and Exotic Cultivars of Pseudo-cereal (Chenopodium). Journal of Life Sciences, 9(1), 64-70.

Molina, C. (1989). La cebada. Ediciones Mundi-Prensa, Madrid. Capítulos 2, 7, páginas 35, 200-203.

Montanuci, F. D., Ribani, M., de Matos Jorge, L. M., & Matos Jorge, R. M. (2017). Effect of steeping time and temperature on malting process. Journal of Food Process Engineering, 40(4), e12519.

Montenegro, D. (2016). Desarrollo de cerveza a base de amaranto (Trabajo de titulación) Quito: Universidad Tecnológica Equinoccial.

Monteros, A. (2016) Rendimientos de Quinua en el Ecuador, Direccion de Anàlisis y Procesamiento de la información, Coordinacion General del Sistema de Informacion Nacional Ministerio de Agricultura, Ganaderia, Acuicultura y Pesca, Quito, Ecuador.

Montoya-Rodriguez, A., Gomez-Favela, M. A., Reyes-Moreno, C., Milan-Carrillo, J., & Gonzalez de Mejía, E. (2015). Identification of bioactive peptide sequences from amaranth (Amaranthus hypochondriacus) seed proteins and their potential role in the prevention of chronic diseases. Comprenhensive Reviews in Food Science and Food Safety, 14, 139e158.

Moreno, M. L., Comino, I., & Sousa, C. (2016). Alternative Grains as Potential Raw Material for Gluten-Free Food Development in The Diet of Celiac and Gluten-Sensitive Patients. Austin. J Nutri Food Sci., 2(3), 1016.

Motta, C., Castanheira, I., Gonzales, G. B., Delgado, I., Torres, D., Santos, M., & Matos, A. S. (2019). Impact of cooking methods and malting on amino acids content in amaranth, buckwheat and quinoa. Journal of Food Composition and Analysis, 76, 58-65.

Motta, C., Delgado, I., Matos, A. S., Gonzales, G. B., Torres, D., Santos, M., & Castanheira, I. (2017). Folatos en quinua (Chenopodium quinoa), amaranto (Amaranthus sp.) y trigo sarraceno (Fagopyrum esculentum): Influencia de la cocción y el malteado. Revista de composición y análisis de alimentos, 64, 181-187.

Najdi Hejazi, S., Orsat, V., Azadi, B., & Kubow, S. (2016). Improvement of the in vitro protein digestibility of amaranth grain through optimization of the malting process. Journal of Cereal Science, 68, 59-65.

Nascimento, A. C., Mota, C., Coelho, I., Guelfão, S., Santos, M., Matos, A. S., et al. (2014). Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: proximates, minerals and trace elements. Food Chemistry, 148, 420e426.

Navruz-Varli, S., & Sanlier, N. (2016). Nutritional and health benefits of quinoa (Chenopodium quinoa Willd). Journal of Cereal Science, 69, 371-376.

Norma Técnica Peruana - NTP 213.014:2016 Bebidas Alcoholicos, Cerveza. Requisitos. Perú.

Omary, M. B., Fong, C., Rothschild, J., & Finney, P. (2012). REVIEW: Effects of Germination on the Nutritional Profile of Gluten-Free Cereals and Pseudocereals: A Review. Cereal Chemistry Journal, 89(1), 1-14.

Paredes-Lopez, O., & Mora-Escobedo, R. (1989). Germination of amaranth seeds: effects on nutrient composition and color. Journal Food Science, 54, 761-762.

Paucar-Menacho, L. M., Martínez-Villaluenga, C., Dueñas, M., Frias, J., & Peñas, E. (2018). Response surface optimisation of germination conditions to improve the accumulation of bioactive compounds and the antioxidant activity in quinoa. International Journal of Food Science & Technology, 53(2), 516-524.

Paucar-Menacho, L. M., Peñas, E., Dueñas, M., Frias, J., & Martínez-Villaluenga, C. (2017). Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT - Food Science and Technology, 76, 245-252.

Peñarrieta, J. M., Alvarado, J. A., Akesson, B., & Bergenståhl, B. (2008). Total antioxidant capacity and content of flavonoids and other phenolic compounds in canihua (Chenopodium pallidicaule): an Andean pseudocereal. Mol Nutr Food Res, 52(6), 708-717.

Peñarrieta, J. M., Alvarado, J. A., Åkesson, B., & Bergenståhl, B. (2008). Total antioxidant capacity and content of flavonoids and other phenolic compounds in canihua (Chenopodium pallidicaule): An Andean pseudocereal. Molecular Nutrition & Food Research, 52(6), 708-717.

Pereira, E., Encina-Zelada, C., Barros, L., Gonzales-Barron, U., Cadavez, V., & C.F.R. Ferreira, I. (2019). Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food. Food Chemistry, 280, 110-114.

Péres-Guerrero, M. (2017). Malteo de la semilla de Amaranto para la elaboración de cerveza Artesanal [Universidad Autónoma Metropolitana]. Tesis de Maestría. México.

Pérez-Sánchez, A., Alfonso-Fernández, H. M., Aragón-Fontes, J. C., Baltá-García, J. G., & Benítes-Cortés, I. (2019). Estudio preliminar del proceso de producción de cerveza a partir de sorgo rojo CIAP R-132 a escala de laboratorio. ResearchGate, July, 27-37.

Phiarais, B. P. N., Mauch, A., Schehl, B. D., Zarnkow, M., Gastl, M., Herrmann, M., & Arendt, E. K. (2010). Processing of a Top Fermented Beer Brewed from 100% Buckwheat Malt with Sensory and Analytical Characterisation. Journal of the Institute of Brewing, 116(3), 265-274.

Phiarais, B. P., & Arendt, E. K. (2008). Malting and brewing with gluten-free cereals. In Gluten-Free Cereal Products and Beverages (pp. 348-371). Elsevier Inc.

Pilco-Quesada, S., Tian, Y., Yang, B., Repo-Carrasco-Valencia, R., & Suomela, J. P. (2020). Effects of germination and kilning on the phenolic compounds and nutritional properties of quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus). Journal of Cereal Science, 94, 102996.

Rai, S., Kaur, A., & Chopra, C. S. (2018). Gluten-free products for celiac susceptible people. Front Nutr, 5, 116.

Ramos-Diaz, J. M., Suuronen, J. P., Deegan, K. C., Serimaa, R., Tuorila, H., & Jouppila, K. (2015). Physical and sensory characteristics of corn-based extruded snacks containing amaranth, quinoa and kañiwa flour. LWT - Food Science and Technology, 64(2), 1047-1056.

Ranilla, L. G., Apostolidis, E., Genovese, M. I., Lajolo, F. M., & Shetty, K. (2009). Evaluation of indigenous grains from the Peruvian Andean region for antidiabetes and antihypertension potential using in vitro methods. Journal of Medicinal Food, 12(4), 704-713.

Rastrelli, L., De Simone, F., Schettino, O., & Dini, A. (1996). Constituents of Chenopodium pallidicaule (canihua) seeds: isolation and characterization of new triterpene saponins. J Agric Food Chem, 44, 3528-3533.

Recalde, M. S. (2017). Obtención de una bebida tipo cerveza a partir de maltas de maíz (Zea mays) y quinua (Chenopodium quinoa). 71 hojas. Quito: EPN.

Reguera, M., & Haros, C. M. (2017). Structure and composition kernles. In R. Monika, H. & Schoenlechner (Ed.), Pseudocereals: Chemistry and Technology (pp. 28-48).

Repo-Carrasco, R., Espinoza, C., & Jacobsen, S.-E. (2003). Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule). Food Reviews Internatio-nal, 19, 179-189.

Repo-Carrasco-Valencia, R., & Valdez-Arana, J. (2017). Carbohydrates of kernel. In: Haros M, Schoenlechner R (eds) Pseudocereals: chemistry and technology. Wiley, Oxford.

Repo-Carrasco-Valencia, R. A. M., & Serna, L. A. (2011). Quinoa (Chenopodium quinoa, Willd.) as a source of dietary fiber and other functional components. Food Science and Technology, 31, 225-230.

Repo-Carrasco-Valencia, R., Peña, J., Kallio, H., & Salminen, S. (2009b). Dietary fiber and other functional components in two varieties of crude and extruded kiwicha (Amaranthus caudatus). Journal of Cereal Science, 49, 219-224.

Repo-Carrasco-Valencia, R., Acevedo de La Cruz, A., Icochea Alvarez, J. C., & Kallio, H. (2009a). Chemical and functional characterization of kañiwa (Chenopodium pallidicaule) grain, extrudate and bran. Plant Foods for Human Nutrition, 64(2), 94-101.

Repo-Carrasco-Valencia, R., Hellström, J. K., Pihlava, J. M., & Mattila, P. H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 120(1), 128-133.

Repo-Carrasco-Valencia, R., Hellström, J. K., Pihlava, J.-M., & Mattila, P. H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 120(1), 128-133.

Rochetti, G., et al., 2019. Gluten-free flours from cereals, pseudocereals and legumes: phenolic fingerprints and in vitro antioxidant properties. Food Chem., 271, 157-164.

Rodriguez, W. (2015). Efecto de la sustitución de cebada (Hordeum vulgare) por quinua (Chenopodium quinoa) u del pH inicial de maceración en las características fisicoquímicas y aceptabilidad general de una cerveza tipo Ale. Tesis Licenciatura. Universidad Privada Antenor Orrego. Perú.

Romanini, E., Rastelli, S., Donadini, G., Lambri, M., & Bertuzzi, T. (2021). Piridoxina y folatos durante la elaboración de cerveza a pequeña y gran escala. Revista del Instituto de Elaboración de la Cerveza, 127(2), 135-139.

Romero, I. (2019). Optimización del proceso de elaboración de malta de arroz (Oryza sativa) (Tesis de grado). Universidad Nacional de Trujillo, Trujillo-Perú.

Roque, O. (2019). Diferencias de la constante térmica en las fases fenológicas de dos variedades de amaranto (Amaranthus caudatus. l): precoz y tardía en la microcuenca del distrito de Ayacucho. Universidad Nacional de Huancavelica.

Salvador, V., Blanco, C. A., & Caballero, I. (2022). Developments and characteristics of craft beer production processes. Food Bioscience, 45, 101495.

Schoenlechner, R. (2017). Quinoa: Its Unique Nutritional and Health-Promoting Attributes. In Gluten-Free Ancient Grains: Cereals, Pseudocereals, and Legumes: Sustainable, Nutritious, and Health-Promoting Foods for the 21st Century (pp. 105-129). Elsevier Inc.

Scioli, G., Della Valle, A., Zengin, G., Locatelli, M., Tartaglia, A., Cichelli, A., Stefanucci, A., & Mollica, A. (2022). Artisanal fortified beers: Brewing, enrichment, HPLC-DAD analysis and preliminary screening of antioxidant and enzymatic inhibitory activities. Food Bioscience, 48, 101721.

Segura-Nieto, M., Shewry, P. R., & Paredes-López, O. (1999). Globulins of the Pseudocereals: Amaranth, Quinoa, and Buckwheat. In Seed Proteins (pp. 453-475). Springer Netherlands.

Shi, D., Fidelis, M., Ren, Y., Stone, A. K., Ai, Y., & Nickerson, M. T. (2020). The functional attributes of Peruvian (Kankolla and Blanca juli blend) and Northern quinoa (NQ94PT) flours and protein isolates, and their protein quality. Food Research International, 128, 108799.

Shopska, V., Denkova-Kostova, R., Dzhivoderova-Zarcheva, M., Teneva, D., Denev, P. y Kostov, G. (2021). Estudio comparativo sobre el contenido fenólico y la actividad antioxidante de diferentes tipos de malta. Antioxidantes, 10 (7), 1124. doi: 10.3390 / antiox10071124

Shreeja, K., Devi, S. S, Suneetha, W. J., & Prabhakar, B. N. (2021). Efecto de la germinación sobre la composición nutricional del trigo sarraceno común (Fagopyrum esculentum Moench). Revista Internacional de Investigación de Química Pura y Aplicada, 1-7.

Singh, A., Rehal, J., Kaur, A. & Jyot, G. (2015). Enhancement of attributes of cereal by germination and fermentation: A review. Critical Reviews in Food Science and Nutrition, 55(11), 1575-1589.

Solano, R. E. I. (2019). Caracterización fisicoquímica y organoléptica de malta, producida a partir de cebada (de la especie Hordeum Distichum), de tres provincias de la región La Libertad. [Universidad Nacional de Trujillo].

Suarez, M. (2013). Cerveza: Componentes y propiedades (Tesis de grado de master). Universidad de Oviedo, España.

Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R., & Tsao, R. (2015). Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 166, 380-388.

Tatenda, C., Manhokwe, S., Jombo, T., Mugadza, D., Njini, M., & Manjeru, P. (2022). Optimisation of Malting Parameters for Quinoa and Barley: Application of Response Surface Methodology. Journal of Food Quality, Article ID 5279177.

Teran, S. R. (2017). Evaluación de la utilización de amaranto (Amaranthus spp.) como adjunto y dos cepas de levadura (Saccharomyces cerevisiae) en la fabricación de cerveza (Tesis de Licenciatura). Escuela Politecnica Nacional, Quito.

Toro-Gonzalez, D. (2017). The craft brewing industry in Latin America. Choices, 32(3), 1-5.

Valdez-Arana, J.-C., Steffolani, M. E., Repo-Carrasco-Valencia, R., Pérez, G. T., & Condezo-Hoyos, L. (2020). Physicochemical and functional properties of isolated starch and their correlation with flour from the Andean Peruvian quinoa varieties. International Journal of Biological Macromolecules, 147, 997-1007.

Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. Journal of Science and Food Agriculture, 90, 2541-2547.

Vidal, A., Cáceres, G., Estrada, R., Pinedo, R. (2015). Catalogue of commercial varieties of quinoa in Perú. ISBN 978-92-5-108765-7

Vilcacundo, R., & Hernández-Ledesma, B. (2017). Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science, 14, 1-6.

Villamarín, D. P. G. (2017). Elaboración De Cerveza Artesanal Con Quinua (Chenopodium Quinoa).

Vingrys, K., Mathai, M., Ashton, J. F., Stojanovska, L., Vasiljevic, T., McAinch, A. J., & Donkor, O. N. (2022). The effect of malting on phenolic compounds and radical scavenging activity in grains and breakfast cereals. Journal of Food Science, 87, 4188-4202.

Wachełk, O., Szpot, P., & Zawadzki, M. (2021). La aplicación del método de cromatografía de gases de espacio de cabeza para la determinación de alcohol etílico en cervezas artesanales, vinos y refrescos. Química de los alimentos, 346, 128924.

Wallin, C., Dipietro, M., Schwarz, R., & Bamforth, C. (2010). A comparison of the three methods for the assessment of foam stability of beer. Journal of the Institute of Brewing, 116(1), 78-80.

Wannenmacher, J., Gastl, M., & Becker, T. (2018). Phenolin substances in beer: Structural diversity, reactive potential and relevance for brewing process and beer quality. Comprehensive Review in Food Science and Food Safety, 17(4), 953-988.

Woolverton, A. E., & Parcell, J. L. (2008). Can niche agriculturalists takenotes from the craft beer industry? Journal of Food Distribution Research, 39(2), 50-65.

Zapata, O. G. S. (2016). Proceso para obtener una bebida de bajo grado alcohólico a partir de la quinua. In Universidad Central de Ecuador (Vol. 147).

Zarnkow, M.,Kessler, M., Burgerg, F., Kreisz, S., & Back, W. (2005). Gluten-free beer from malted cereals and pseudocereals. Proceedings of the 30th European Brewery Convention (vol. 104, p. 1-8), Prague, Czech Republic. Fachverlag Hans Carl, Nurnberg.

Zegarra, S., Muñoz, A. M., & Ramos-Escudero, F. (2019). Elaboración de un pan libre de gluten a base de harina de cañihua (Chenopodium pallidicaule Aellen) y evaluación de la aceptabilidad sensorial. Revista chilena de nutrición, 46(5), 561-570.

Zeiter, A. (2016). Efecto del malteado de híbridos de sorgo blanco y rojo sobre la composición y las propiedades funcionales de las harinas. Encuentro de jóvenes Investigadores, 1-4.




Cómo citar

Paucar-Menacho, L. M. ., Salvador-Reyes, R. ., Castillo-Martinez, W. E. ., Símpalo-López, W. D. ., Verona-Ruiz, A. ., Lavado-Cruz, A. ., Quezada-Berrú, S. ., & López-Rodriguez, W. . (2022). Use of Andean pseudocereals in beer production. Scientia Agropecuaria, 13(4), 395-410.



Artículos de Revisión

Artículos más leídos del mismo autor/a

1 2 > >>