Emerging non-thermal technologies in the food industry: Advances and potential applications in food processing

Authors

  • Luz María Paucar-Menacho Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Perú. https://orcid.org/0000-0001-5349-6167
  • Cesar Moreno-Rojo Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Perú. https://orcid.org/0000-0002-7143-4450
  • Saúl Ricardo Chuqui-Diestra Departamento Académico de Ingeniería Química, Facultad de Ingeniería Química y Metalurgia, Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, Perú. https://orcid.org/0000-0003-2582-2716

DOI:

https://doi.org/10.17268/sci.agropecu.2024.006

Keywords:

Emerging technologies, food preservation, bioactive substances, green technologies, functional foods

Abstract

Currently, the food industry prioritizes the safety and quality of products, facing the challenge of maintaining sensory and nutritional integrity. To address this challenge, emerging non-thermal technologies are being explored that offer significant advantages in improving food quality over conventional technologies. This review aims to provide a comprehensive understanding of how these innovative technologies can transform the traditional food processing landscape as we know it. Non-thermal technologies have the potential to reduce energy consumption for food production, processing and packaging, compared to conventional thermal treatments. Furthermore, these technologies are particularly suitable for efficiently preserving bioactive compounds present in foods. This review describes the fundamental principles, applications, advantages and limitations of emerging technologies in food processing. These technologies include pulsed electric field, ultrasound, cold plasma, high pressure, irradiation, light-emitting diodes, pulsed light and oscillating magnetic fields. Despite the large number of studies on the subject, more research is required to optimize and improve the efficiency of the application of these technologies, alone or in combination, in food processing. The bioaccessibility and bioactivity of the compounds, nutritional value, shelf life and sensory aspects may be variables of interest.

References

Aadil, R. M., Zeng, X.-A., Han, Z., Sahar, A., Khalil, A. A., Rahman, U. U., Khan, M., & Mehmood, T. (2017). Combined effects of pulsed electric field and ultrasound on bioactive compounds and microbial quality of grapefruit juice. Journal of Food Processing and Preservation, 42(2), e13507. https://doi.org/10.1111/jfpp.13507

Abera, G. (2019). Review on high-pressure processing of foods. Cogent Food and Agriculture, 5(1) 1568725. https://doi.org/10.1080/23311932.2019.1568725

Abida, J., Rayees, B., & Masoodi, F. A. (2014). Pulsed light technology: a novel method for food preservation. International Food Research Journal, 21(3), 839.

Abolhasani, A., Barzegar, M., & Sahari, M. A. (2018). Effect of gamma irradiation on the extraction yield, antioxidant, and antityrosinase activities of pistachio green hull extract. Radiation Physics and Chemistry, 144, 373-378. https://doi.org/10.1016/j.radphyschem.2017.09.025

Al-Juhaimi, F., Ghafoor, K., Musa, M., Zcan, O. ¨, Jahurul, M. H. A., Elfadil, Babiker, E., Jinap, S., Sahena, F., Sharifudin, M. S., & Zaidul, I. S. M. (2018). Effect of various food processing and handling methods on preservation of natural antioxidants in fruits and vegetables. Journal of Food Science and Technology, 50(10), 3872–3880. https://doi.org/10.1007/s13197-018-3370-0

Arshad, R. N., Abdul-Malek, Z., Munir, A., Buntat, Z., Ahmad, M. H., Jusoh, Y. M., Bekhit, A. E., Roobad, U., Manzoor, M. F., & Aadil, R. M. (2020). Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends in food science & technology, 104, 1-13. https://doi.org/10.1016/j.tifs.2020.07.008

Arshad, R. N., Abdul-Malek, Z., Roobab, U., Munir, M. A., Naderipour, A., Qureshi, M. I., Bekhit, A., Liu, Z., & Aadil, R. M. (2021). Pulsed electric field: A potential alternative towards a sustainable food processing. Trends in Food Science & Technology, 111, 43-54. https://doi.org/10.1016/j.tifs.2021.02.041

Augusto, P. E. (2020). Challenges, trends and opportunities in food processing. Current Opinion in Food Science, 35, 72-78. https://doi.org/10.1016/j.cofs.2020.03.005

Baenas, N., Iniesta, C., González-Barrio, R., Nuñez-Gómez, V., Periago, M., García-Alonso, F. (2021). Uso poscosecha de luz ultravioleta (UV) y diodo emisor de luz (LED) para mejorar los compuestos bioactivos en tomates refrigerados. Molecules, 26(7), 1847. https://doi.org/10.3390/molecules26071847

Balasubramaniam, V. M., Martinez-Monteagudo, S. I., & Gupta, R. (2015). Principles and application of high pressure–based technologies in the food industry. Annual review of food science and technology, 6, 435-462. https://doi.org/10.1146/annurev-food-022814-015539

Bevilacqua, A., Petruzzi, L., Perricone, M., Speranza, B., Campaniello, D., Sinigaglia, M., & Corbo, M. R. (2018). Nonthermal technologies for fruit and vegetable juices and beverages: overview and advances. Comprehensive Reviews in Food Science and Food Safety, 17(1), 2– 62. https://doi.org/10.1111/1541-4337.12299.

Blahovec, J., Vorobiev, E., & Lebovka, N. (2017). Pulsed electric fields pretreatments for the cooking of foods. Food engineering reviews, 9, 226-236. https://doi.org/10.1007/s12393-017-9170-x

Branas C, Azcondo FJ, Alonso JM. (2013). Solid-state lighting: a system review. Industrial Electronics Magazine, IEEE, 7(4), 6-14. https://doi.org/10.1109/MIE.2013.2280038.

Buchmann, L., Bloch, R., & Mathys, A. (2018). Comprehensive pulsed electric field (PEF) system analysis for microalgae processing. Bioresource technology, 265, 268-274. https://doi.org/10.1016/j.biortech.2018.06.010

Bulbul, V. J., Bhushette, P. R., Zambare, R. S., Deshmukh, R. R., & Annapure, U. S. (2019). Effect of cold plasma treatment on Xanthan gum properties. Polymer Testing, 79, 106056. https://doi.org/10.1016/j.polymertesting.2019.106056

Carrillo-Lopez, L. M., Garcia-Galicia, I. A., Tirado-Gallegos, J. M., Sanchez-Vega, R., Huerta-Jimenez, M., Ashokkumar, M., & Alarcon-Rojo, A. D. (2021). Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties. Ultrasonics Sonochemistry, 73, 105467. https://doi.org/10.1016/j.ultsonch.2021.105467

Chakka, A. K., Sriraksha, M. S., & Ravishankar, C. N. (2021). Sustainability of emerging green non-thermal technologies in the food industry with food safety perspective: A review. Lwt, 151, 112140. https://doi.org/10.1016/j.lwt.2021.112140

Chantakun, K., & Benjakul, S. (2022). Characteristics and qualities of edible bird's nest beverage as affected by thermal pasteurization and sterilization. Journal of Food Science and Technology, 59(10), 4056-4066. https://doi.org/10.1007/s13197-022-05455-8

Chávez-Martínez, A., Reyes-Villagrana, R. A., Rentería-Monterrubio, A. L., Sánchez-Vega, R., Tirado-Gallegos, J. M., & Bolivar-Jacobo, N. A. (2020). Low and high-intensity ultrasound in dairy products: applications and effects on physicochemical and microbiological quality. Foods, 9(11), 1688. https://doi.org/10.3390/foods9111688

Chen, F., Zhang, M., & Yang, C. H. (2020). Application of ultrasound technology in processing of ready-to-eat fresh food: A review. Ultrasonics sonochemistry, 63, 104953. https://doi.org/10.1016/j.ultsonch.2019.104953

Chen, H. H., Chang, H. C., Chen, Y. K., Hung, C. L., Lin, S. Y., & Chen, Y. S. (2016). An improved process for high nutrition of germinated brown rice production: Low-pressure plasma. Food Chemistry, 191, 120–127. https://doi.org/10.1016/j.foodchem.2015.01.083

Coutinho, N. M., Silveira, M. R., Rocha, R. S., Moraes, J., Ferreira, M. V. S., Pimentel, T. C., Freitas, M. Q., Silva, M. C., Raices, R. S. L., Ranadheera, C. S., Borges, F. O., Mathias, S. P., Fernandes, F. A. N., Rodrigues, S., & Cruz, A. G. (2018). Cold plasma processing of milk and dairy products. Trends in Food Science and Technology, 74, 56–68. https://doi.org/10.1016/j.tifs.2018.02.008

D’Souza, C., Yuk, H.-G., Khoo, G. H., & Zhou, W. (2015). Application of Light-Emitting Diodes in Food Production, Postharvest Preservation, and Microbiological Food Safety. Comprehensive Reviews in Food Science and Food Safety, 14(6), 719–740. https://doi.org/10.1111/1541-4337.12155

Dadi, D. W., Emire, S. A., Hagos, A. D., & Eun, J. B. (2019). Effect of ultrasound-assisted extraction of Moringa stenopetala leaves on bioactive compounds and their antioxidant activity. Food Technology and Biotechnology, 57(1), 77. https://doi.org/10.17113/ftb.57.01.19.5877

Daher, D., Le Gourrierec, S., & Pérez-Lamela, C. (2017). Effect of High-Pressure Processing on the Microbial Inactivation in Fruit Preparations and Other Vegetable Based Beverages. Agriculture, 7(9), 72. https://doi.org/10.3390/agriculture7090072

de Jesus, A. L. T., Cristianini, M., Dos Santos, N. M., & Júnior, M. R. M. (2020). Effects of high hydrostatic pressure on the microbial inactivation and extraction of bioactive compounds from açaí (Euterpe oleracea Martius) pulp. Food research international, 130, 108856 https://doi.org/10.1016/j.foodres.2019.108856

de Souza Carvalho, L. M., Lemos, M. C. M., Sanches, E. A., da Silva, L. S., de Araújo Bezerra, J., Aguiar, J. P. L., Souza, F. C., Filho, E. G., & Campelo, P. H. (2020). Improvement of the bioaccessibility of bioactive compounds from Amazon fruits treated using high energy ultrasound. Ultrasonics Sonochemistry, 67, 105148. https://doi.org/10.1016/j.ultsonch.2020.105148

do Amaral Souza, F. D. C., Moura, L. G. S., de Oliveira Bezerra, K., Aguiar, J. P. L., Mar, J. M., Sanches, E. A., Dos Santos, F., Bakry, A., Paulino, B., & Campelo, P. H. (2019). Thermosonication applied on camu–camu nectars processing: Effect on bioactive compounds and quality parameters. Food and Bioproducts Processing, 116, 212-218. https://doi.org/10.1016/j.fbp.2019.06.003

do Nascimento, C., Santos, B. N., & Rodrigues, S. (2022). High‐intensity ultrasound processed acerola juice containing oligosaccharides and dextran promotes Lacticaseibacillus casei NRRL B‐442 growth. International Journal of Food Science & Technology, 57(8), 5186-5194 https://doi.org/10.1111/ijfs.15829

Ekonomou, S. I., Bulut, S., Karatzas, K. A. G., & Boziaris, I. S. (2020). Inactivation of Listeria monocytogenes in raw and hot smoked trout fillets by high hydrostatic pressure processing combined with liquid smoke and freezing. Innovative Food Science & Emerging Technologies, 64, 102427. https://doi.org/10.1016/j.ifset.2020.102427

Fan, L., Liu, X., Ma, Y., & Xiang, Q. (2020). Effects of plasma-activated water treatment on seed germination and growth of mung bean sprouts. Journal of Taibah University for Science, 14(1), 823–830. https://doi.org/10.1080/16583655.2020.1778326

Feroz, F., Nafisa, S., & Noor, R. (2019). Emerging technologies for food safety: high pressure processing (HPP) and cold plasma technology (CPT) for decontamination of foods. Bangladesh Journal of Microbiology, 36(1), 35-43. https://doi.org/10.3329/bjm.v36i1.44281

Figueroa-Sepúlveda, K., Castillo-Robles, N., & Martínez-Girón, J., (2021). Aplicación de altas presiones y otras tecnologías en frutas como alternativa de tratamientos térmicos convencionales. Biotecnología en el Sector Agropecuario y Agroindustrial, 19(2), 271-285. https://doi.org/10.18684/bsaa.v19.n2.2021.1772

Franco-Vega, A., Reyes-Jurado, F., González-Albarrán, D., Ramírez-Corona, N., Palou, E., & López-Malo, A. (2021). Developments and advances of high intensity pulsed light and its combination with other treatments for microbial inactivation in food products. Food Engineering Reviews, 13, 741-768. https://doi.org/10.1007/s12393-021-09280-1

Gabrić, D., Barba, F., Roohinejad, S., Gharibzahedi, S. M. T., Radojčin, M., Putnik, P., & Bursać Kovačević, D. (2017). Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: A review. Journal of Food Process Engineering, 41(1), e12638. https://doi.org/10.1111/jfpe.12638

Gagneten, M., Leiva, G., Salvatori, D., Schebor, C., & Olaiz, N. (2019). Optimization of pulsed electric field treatment for the extraction of bioactive compounds from blackcurrant. Food and Bioprocess Technology, 12, 1102-1109. https://doi.org/10.1007/s11947-019-02283-1

Gavahian, M., & Cullen, P. J. (2019). Cold Plasma as an Emerging Technique for Mycotoxin-Free Food: Efficacy, Mechanisms, and Trends. Food Reviews International, 36(2), 193-214. https://doi.org/10.1080/87559129.2019.1630638

Gómez-López, V. M., Koutchma, T., & Linden, K. (2012). Ultraviolet and pulsed light processing of fluid foods. In Novel thermal and non-thermal technologies for fluid foods (pp. 185-223). Academic Press. https://doi.org/10.1016/B978-0-12-381470-8.00008-6

González‐Casado, S., López‐Gámez, G., Martín‐Belloso, O., Elez‐Martínez, P., & Soliva‐Fortuny, R. (2022). Pulsed light of near‐infrared and visible light wavelengths induces the accumulation of carotenoids in tomato fruits during post‐treatment time. Journal of Food Science, 87(9), 3913-3924. https://doi.org/10.1111/1750-3841.16270

Guillén Sánchez, J. S., Betim Cazarin, C. B., Regina Canesin, M., Reyes, F. G. R., Hoshi Iglesias, A., & Cristianini, M. (2023). Extraction of bioactive compounds from Peruvian purple corn cob by high isostatic pressure. Scientia Agropecuaria, 14(1), 49-57. https://doi.org/10.17268/sci.agropecu.2023.005

Guimarães, J. T., Silva, E. K., Alvarenga, V. O., Costa, A. L. R., Cunha, R. L., Sant'Ana, A. S., ... & Cruz, A. G. (2018). Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrasonics sonochemistry, 44, 251-260. https://doi.org/10.1016/j.ultsonch.2018.02.012

Handayani, M., & Permawati, H. (2017). Gamma irradiation technology to preservation of foodstuffs as an effort to maintain quality and acquaint the significant role of nuclear on food production to Indonesia society: A Review. Energy Procedia, 127, 302-309. https://doi.org/10.1016/j.egypro.2017.08.112

Hasan, Dr- M., Bashir, T., Ghosh, R., Lee, S., & Bae, H. (2017). An Overview of LEDs' Effects on the Production of Bioactive Compounds and Crop Quality. Molecules, 22(9), 1420. https://doi.org/10.3390/molecules22091420

Heinrich V, Zunabovic M, Varzakas T, Bergmair J, Kneifel W (2016) Pulsed light treatment of diferent food types with a special focus on meat: a critical review. Critical Reviews in Food Science and Nutrition, 56, 591–613. https://doi.org/10.1080/10408398.2013.826174

Her, J. Y., Kang, T., Hoptowit, R., & Jun, S. (2019). Oscillating magnetic field (OMF) based supercooling preservation of fresh-cut honeydew melon. Transactions of the ASABE, 62(3), 779-785. https://doi.org/10.13031/trans.13286

Herceg, Z., Kovačević, D. B., Kljusurić, J. G., Jambrak, A. R., Zorić, Z., & Dragović-Uzelac, V. (2016). Gas phase plasma impact on phenolic compounds in pomegranate juice. Food Chemistry, 190, 665–672. https://doi.org/10.1016/j.foodchem.2015.05.135

Hernández-Hernández, H. M., Moreno-Vilet, L., & Villanueva-Rodríguez, S. J. (2019). Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. Innovative Food Science & Emerging Technologies, 58, 102233. https://doi.org/10.1016/j.ifset.2019.102233

Hinds, L. M., O'Donnell, C. P., Akhter, M., & Tiwari, B. K. (2019). Principles and mechanisms of ultraviolet light emitting diode technology for food industry applications. Innovative Food Science & Emerging Technologies, 56, 102153. https://doi.org/10.1016/j.ifset.2019.04.006

Hu, K., Peng, D., Wang, L., Liu, H., Xie, B., & Sun, Z. (2021). Effect of mild high hydrostatic pressure treatments on physiological and physicochemical characteristics and carotenoid biosynthesis in postharvest mango. Postharvest Biology and Technology, 172, 111381. https://doi.org/10.1016/j.postharvbio.2020.111381

Huang, H. W., Wu, S. J., Lu, J. K., Shyu, Y. T., & Wang, C. Y. (2017). Current status and future trends of high-pressure processing in food industry. Food control, 72, 1-8. https://doi.org/10.1016/j.foodcont.2016.07.019

Huang, M., Zhang, M., & Bhandari, B. (2019). Recent development in the application of alternative sterilization technologies to prepared dishes: A review. Critical Reviews in Food Science and Nutrition, 59(7), 1188-1196. https://doi.org/10.1080/10408398.2017.1421140

Hyun, J., & Lee, S. (2020). Blue light-emitting diodes as eco-friendly non-thermal technology in food preservation. Trends in Food Science and Technology, 105, 284–295. https://doi.org/10.1016/j.tifs.2020.09.008

Ihsanullah, I., & Rashid, A. (2017). Current activities in food irradiation as a sanitary and phytosanitary treatment in the Asia and the Pacific Region and a comparison with advanced countries. Food Control, 72, 345–359. https://doi.org/10.1016/j.foodcont.2016.03.011

Indiarto, R., Pratama, A. W., Sari, T. I., & Theodora, H. C. (2020). Food irradiation technology: A review of the uses and their capabilities. Int. J. Eng. Trends Technol, 68(12), 91-98. https://doi.org/10.14445/22315381/IJETT-V68I12P216

Iqbal, A., Murtaza, A., Hu, W., Ahmad, I., Ahmed, A., & Xu, X. (2019). Activation and inactivation mechanisms of polyphenol oxidase during thermal and non-thermal methods of food processing. Food and Bioproducts Processing, 117, 170-182. https://doi.org/10.1016/j.fbp.2019.07.006

Jadhav, H. B., Annapure, U. S., & Deshmukh, R. R. (2021). Non-thermal technologies for food processing. Frontiers in Nutrition, 8, 657090. https://doi.org/10.3389/fnut.2021.657090

Jan, A., Sood, M., Younis, K., & Islam, R. U. (2020). Brown rice based weaning food treated with gamma irradiation evaluated during storage. Radiation Physics and Chemistry, 177, 109158. https://doi.org/10.1016/j.radphyschem.2020.109158

Ji, A., & An, I. (2020). Irradiation: Utilization, Advances, Safety, Acceptance, Future Trends, and a Means to Enhance Food Security. Advances in Applied Science Research, 11(3). https://doi.org/10.36648/0976-8610.11.3.1

Jin, P., Yao, D., Xu, F., Wang, H., & Zheng, Y. (2015). Effect of light on quality and bioactive compounds in postharvest broccoli florets. Food chemistry, 172, 705-709. https://doi.org/10.1016/j.foodchem.2014.09.134

Jurić, S., Ferrari, G., Velikov, K. P., & Donsì, F. (2019). High-pressure homogenization treatment to recover bioactive compounds from tomato peels. Journal of Food Engineering, 262, 170–180. https://doi.org/10.1016/j.jfoodeng.2019.06.011

Kang, T., Her, J. Y., Hoptowit, R., Wall, M. M., & Jun, S. (2019). Investigation of the effect of oscillating magnetic field on fresh-cut pineapple and agar gel as a model food during supercooling preservation. Transactions of the ASABE, 62(5), 1155-1161. https://doi.org/10.13031/trans.13285

Kang, T., Hoptowit, R., & Jun, S. (2020). Effects of an oscillating magnetic field on ice nucleation in aqueous iron‐oxide nanoparticle dispersions during supercooling and preservation of beef as a food application. Journal of Food Process Engineering, 43(11), e13525. https://doi.org/10.1111/jfpe.13525

Kart, D., Gurel, D. B., & Kayaardi, S. (2018). Cold plasma and ultrasound applications in cleaning of food contact surfaces. International Journal of Scientific and Technological Research, 4(8), 17-27.

Kaur, M., & Kumar, M. (2019). An Innovation in Magnetic Field Assisted Freezing of Perishable Fruits and Vegetables: A Review. Food Reviews International, 36(8), 761-780. https://doi.org/10.1080/87559129.2019.1683746

Khan, M. K., Ahmad, K., Hassan, S., Imran, M., Ahmad, N., & Xu, C. (2018). Effect of novel technologies on polyphenols during food processing. Innovative Food Science & Emerging Technologies, 45, 361–381. https://doi.org/10.1016/j.ifset.2017.12.006

Khouryieh, H. A. (2021). Novel and emerging technologies used by the US food processing industry. Innovative Food Science & Emerging Technologies, 67, 102559. https://doi.org/10.1016/j.ifset.2020.102559

Kokalj, D., Hribar, J., Cigić, B., Zlatić, E., Demšar, L., Sinkovič, L., Šircelj, H., Bizjak, G., & Vidrih, R. (2016). Influence of Yellow Light-Emitting Diodes at 590 nm on Storage of Apple, Tomato and Bell Pepper Fruit. Food Technol Biotechnol. 54(2), 228-235. https://doi.org/10.17113/ftb.54.02.16.4096

Kramer, B., Wunderlich, J., & Muranyi, P. (2017). Recent findings in pulsed light disinfection. Journal of Applied Microbiology, 122(4), 830-856. https://doi.org/10.1111/jam.13389

Kwaw, E., Ma, Y., Tchabo, W., Apaliya, M. T., Sackey, A. S., Wu, M., & Xiao, L. (2018). Effect of pulsed light treatment on the phytochemical, volatile, and sensorial attributes of lactic-acid-fermented mulberry juice. International Journal of Food Properties, 21(1), 213-228. https://doi.org/10.1080/10942912.2018.1446024

Leong, T., Juliano, P., & Knoerzer, K. (2017). Advances in ultrasonic and megasonic processing of foods. Food Engineering Reviews, 9(3), 237–256. https://doi.org/10.1007/s12393-017-9167-5

Li, X., Li, M., Ji, N., Jin, P., Zhang, J., Zheng, Y., Zhang, X., & Li, F. (2019). Cold plasma treatment induces phenolic accumulation and enhances antioxidant activity in fresh-cut pitaya (Hylocereus undatus) fruit. Lwt, 115, 108447. https://doi.org/10.1016/j.lwt.2019.108447

Mahendran, R., Ramanan, K. R., Barba, F. J., Lorenzo, J. M., López-Fernández, O., Munekata, P. E., ... & Tiwari, B. K. (2019). Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends in food science & technology, 88, 67-79. https://doi.org/10.1016/j.tifs.2019.03.010

Mandal, R., Mohammadi, X., Wiktor, A., Singh, A., & Pratap Singh, A. (2020). Applications of pulsed light decontamination technology in food processing: An overview. Applied Sciences, 10(10), 3606. https://doi.org/10.3390/app10103606

Marangoni Júnior, L., & Anjos, C. A. R. (2018). Effect of high-pressure processing on characteristics of flexible packaging for foods and beverages. Food Research International, 119, 920-930. https://doi.org/10.1016/j.foodres.2018.10.078

Martínez-Ramos, T., Benedito-Fort, J., Watson, N. J., Ruiz-López, I. I., Che-Galicia, G., & Corona-Jiménez, E. (2020). Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.). Food and Bioproducts Processing, 122, 41-54. https://doi.org/10.1016/j.fbp.2020.03.011

Martínez-Zamora, L., Castillejo, N., Gómez, P. A., & Artés-Hernández, F. (2021). Amelioration effect of LED lighting in the bioactive compounds synthesis during carrot sprouting. Agronomy, 11(2), 304. https://doi.org/10.3390/agronomy11020304

Mustafa, F. H., & Jaafar, M. S. (2013). Comparison of wavelength-dependent penetration depths of lasers in different types of skin in photodynamic therapy. Indian Journal of Physics, 87, 203-209. https://doi.org/10.1007/s12648-012-0213-0

Nabi, B. G., Mukhtar, K., Arshad, R. N., Radicetti, E., Tedeschi, P., Shahbaz, M. U., Walayat, N., Nawaz, A., Inam-Ur-Raheem, M. & Aadil, R. M. (2021). High-pressure processing for sustainable food supply. Sustainability, 13(24), 13908. https://doi.org/10.3390/su132413908

Najafabadi, N. S., Sahari, M. A., Barzegar, M., & Esfahani, Z. H. (2017). Effect of gamma irradiation on some physicochemical properties and bioactive compounds of jujube (Ziziphus jujuba var vulgaris) fruit. Radiation Physics and Chemistry, 130, 62-68 https://doi.org/10.1016/j.radphyschem.2016.07.002

Naveena, B., & Nagaraju, M. (2020). Review on principles, effects, advantages and disadvantages of high pressure processing of food. International Journal of Chemical Studies, 8(2), 2964-2967. https://doi.org/10.22271/chemi.2020.v8.i2at.9202

Niu, D., Zeng, X. A., Ren, E. F., Xu, F. Y., Li, J., Wang, M. S., & Wang, R. (2020). Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Research International, 137, 109715. https://doi.org/10.1016/j.foodres.2020.109715

Nowacka, M., Tappi, S., Wiktor, A., Rybak, K., Miszczykowska, A., Czyzewski, J., Drozdzal, K., Witrowa-Rajchert, D., & Tylewicz, U. (2019). The impact of pulsed electric field on the extraction of bioactive compounds from beetroot. Foods, 8(7), 244. https://doi.org/10.3390/foods8070244

Obileke, K., Onyeaka, H., Miri, T., Nwabor, O. F., Hart, A., Al‐Sharify, Z. T., ... & Anumudu, C. (2022). Recent advances in radio frequency, pulsed light, and cold plasma technologies for food safety. Journal of Food Process Engineering, 45(10), e14138. https://doi.org/10.1111/jfpe.14138

Ojha, K. S., Tiwari, B. K., O’Donnell, C., & Kerry, J. P. (2016). Emerging Nonthermal Food Preservation Technologies. Innovation and Future Trends in Food Manufacturing and Supply Chain Technologies, 257–274. https://doi.org/10.1016/B978-1-78242-447-5.00009-5

Okuda, K., Kawauchi, A., & Yomogida, K. (2020). Quality improvements to mackerel (Scomber japonicus) muscle tissue frozen using a rapid freezer with the weak oscillating magnetic fields. Cryobiology, 95, 130-137. https://doi.org/10.1016/j.cryobiol.2020.05.005

Olatunde, O. O., & Benjakul, S. (2018). Nonthermal Processes for Shelf-Life Extension of Seafoods: A Revisit. Comprehensive Reviews in Food Science and Food Safety, 17(4), 892-904. https://doi.org/10.1111/1541-4337.12354

Otero, L., Pérez-Mateos, M., Rodríguez, A. C., & Sanz, P. D. (2017). Electromagnetic freezing: Effects of weak oscillating magnetic fields on crab sticks. Journal of Food Engineering, 200, 87–94. https://doi.org/10.1016/j.jfoodeng.2016.12.018

Paixão, L. M. N., Fonteles, T. V., Oliveira, V. S., Fernandes, F. A. N., & Rodrigues, S. (2018). Cold Plasma Effects on Functional Compounds of Siriguela Juice. Food and Bioprocess Technology, 12, 110–121. https://doi.org/10.1007/s11947-018-2197-z

Pataro, G., Sinik, M., Capitoli, M. M., Donsì, G., & Ferrari, G. (2015). The influence of post-harvest UV-C and pulsed light treatments on quality and antioxidant properties of tomato fruits during storage. Innovative Food Science & Emerging Technologies, 30, 103-111. https://doi.org/10.1016/j.ifset.2015.06.003

Pattnaik, M., Pandey, P., Martin, G. J., Mishra, H. N., & Ashokkumar, M. (2021). Innovative technologies for extraction and microencapsulation of bioactives from plant-based food waste and their applications in functional food development. Foods, 10(2), 279. https://doi.org/10.3390/foods10020279

Pérez-Andrés, J. M., Charoux, C. M. G., Cullen, P. J., & Tiwari, B. K. (2018). Chemical modifications of lipids and proteins by nonthermal food processing technologies. Journal of Agricultural and Food Chemistry, 66(20), 5041–5054. https://doi.org/10.1021/acs.jafc.

Pérez-Jiménez, J. (2019). Potencial de los polifenoles de la dieta (extraíbles y no extraíbles) en la prevención de enfermedades cardiometabólicas. ANALES RANM, 136(2), 298-307. http://dx.doi.org/10.32440/ar.2019.136.03.rev11 .

Pi, X., Yang, Y., Sun, Y., Wang, X., Wan, Y., Fu, G., Li, X., & Cheng, J. (2022). Food irradiation: a promising technology to produce hypoallergenic food with high quality. Critical Reviews in Food Science and Nutrition, 62(24) 6698-6713. https://doi.org/10.1080/10408398.2021.1904822

Pirozzi, A., Pataro, G., Donsì, F., & Ferrari, G. (2021). Edible coating and pulsed light to increase the shelf life of food products. Food Engineering Reviews, 13, 544-569. https://doi.org/10.1007/s12393-020-09245-w

Pollock, A. M., Singh, A. P., Ramaswamy, H. S., & Ngadi, M. O. (2017). Pulsed light destruction kinetics of L. monocytogenes. LWT, 84, 114-121. https://doi.org/10.1016/j.lwt.2017.05.040

Poonia, A., Pandey, S., & Vasundhara. (2022). Application of light emitting diodes (LEDs) for food preservation, post-harvest losses and production of bioactive compounds: A review. Food Production, Processing and Nutrition, 4(1), 8 https://doi.org/10.1186/s43014-022-00086-0

Prasad, A., Du, L., Zubair, M., Subedi, S., Ullah, A., & Roopesh, M. S. (2020). Applications of light-emitting diodes (LEDs) in food processing and water treatment. Food Engineering Reviews, 12, 268-289. https://doi.org/10.1007/s12393-020-09221-4

Priyadarshini, A., Rajauria, G., O’Donnell, C. P., & Tiwari, B. K. (2018). Emerging Food Processing Technologies and Factors Impacting their Industrial Adoption. Critical Reviews in Food Science and Nutrition, 59(19), 3082-3101, https://doi.org/10.1080/10408398.2018.1483890

Purnell, G., James, C. & James, S.J. The Effects of Applying Oscillating Magnetic Fields During the Freezing of Apple and Potato. Food Bioprocess Technol, 10, 2113–2122 (2017). https://doi.org/10.1007/s11947-017-1983-3

Puza, E. A., Mayo, F. E. C., Polo, J. M. A., la Matta, D., Perea, A., Espinoza, J. S., & Alva, J. C. (2019). Effect of freezing with oscillating magnetic fields on the physical and sensorial characteristics of mango (Mangifera indica L. cv.‘Kent’). Brazilian Journal of Food Technology, 22, e2018169. https://doi.org/10.1590/1981-6723.16918

Qian, H., Liu, T., Deng, M., Miao, H., Cai, C., Shen, W., & Wang, Q. (2016). Effects of light quality on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts. Food chemistry, 196, 1232-1238. https://doi.org/10.1016/j.foodchem.2015.10.055

Radhakrishnan, M., Maqsood, S., & Siliveru, K. (2023). Emerging non-thermal technology applications for sustainable food processing. Frontiers in Sustainable Food Systems, 7, 1190320. https://doi.org/10.3389/fsufs.2023.1190320

Rahaman, A., Zeng, X.-A., Farooq, M. A., Kumari, A., Murtaza, M. A., Ahmad, N., Faisal, M., Hassan, Z., Ahmad, Z., Bo-Ru, C., Jinjing, Z., & Siddeeg, A. (2020). Effect of pulsed electric fields processing on physiochemical properties and bioactive compounds of apricot juice. Journal of Food Process Engineering, 43(8), e13449. https://doi.org/10.1111/jfpe.13449

Ravindran, R., & Jaiswal, A. K. (2019). Wholesomeness and safety aspects of irradiated foods. Food chemistry, 285, 363-368. https://doi.org/10.1016/j.foodchem.2019.02.002

Ribeiro, N. G., Xavier-Santos, D., Campelo, P. H., Guimarães, J. T., Pimentel, T. C., Duarte, M. C. K., Freitas, M. Q., Esmerino, E. A. Silva, M. C., & Cruz, A. G. (2022). Dairy foods and novel thermal and non-thermal processing: a bibliometric analysis. Innovative Food Science & Emerging Technologies, 76, 102934. https://doi.org/10.1016/j.ifset.2022.102934

Rodríguez, A. C., James, C., & James, S. J. (2017). Effects of weak oscillating magnetic fields on the freezing of pork loin. Food and Bioprocess Technology, 10, 1615-1621. https://doi.org/10.1007/s11947-017-1931-2

Rodríguez-Roque, M. J., de Ancos, B., Sánchez-Moreno, C., Cano, M. P., Elez-Martínez, P., & Martín-Belloso, O. (2015). Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. Journal of Functional Foods, 14, 33-43. https://doi.org/10.1016/j.jff.2015.01.020

Rybak, K., Wiktor, A., Pobiega, K., Witrowa-Rajchert, D., & Nowacka, M. (2021). Impact of pulsed light treatment on the quality properties and microbiological aspects of red bell pepper fresh-cuts. Lwt, 149, 111906. https://doi.org/10.1016/j.lwt.2021.111906

Sack, M., & Mueller, G. (2017). Design considerations for electroporation reactors. IEEE Transactions on Dielectrics and Electrical Insulation, 24(4), 1992-2000. https://doi.org/10.1109/TDEI.2016.006219

Sánchez-Moreno, C., González-Peña, D., Colina-Coca, C., Ancos, B. de, Sánchez-Moreno, C., González-Peña, D., Colina-Coca, C., & Ancos, B. de. (2018). Métodos físicos no tradicionales de control microbiológico aplicables al proceso de elaboración de hortalizas de IV Gama. Agrociencia (Uruguay), 22(1), 26–36. https://doi.org/10.31285/agro.22.1.3.

Santos, A. L. dos, Morais, R. A., Soares, C. M. da S., Vellano, P. O., Martins, G. A. de S., Damiani, C., & Souza, A. R. M. de. (2022). Effect of Gamma Irradiation on the Physicochemical, Functional and Bioactive Properties of Red Pitaya (Hylocereus Costaricensis) Bark Flour. SSRN Electronic Journal, 199. https://doi.org/10.2139/ssrn.4025958

Shabana, E. F., Gabr, M. A., Moussa, H. R., El-Shaer, E. A., & Ismaiel, M. M. (2017). Biochemical composition and antioxidant activities of Arthrospira (Spirulina) platensis in response to gamma irradiation. Food Chemistry, 214, 550-555. https://doi.org/10.1016/j.foodchem.2016.07.109

Siddeeg, A., Faisal Manzoor, M., Haseeb Ahmad, M., Ahmad, N., Ahmed, Z., Kashif Iqbal Khan, M., Maan, A., Nisa, M., Zeng, Z., & Ammar, A. F. (2019). Pulsed electric field-assisted ethanolic extraction of date palm fruits: Bioactive compounds, antioxidant activity and physicochemical properties. Processes, 7(9), 585. https://doi.org/10.3390/pr7090585

Singla, M., & Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73, 105506. https://doi.org/10.1016/j.ultsonch.2021.105506

Song K, Taghipour F, Mohseni M (2018) Microorganisms inactivation by continuous and pulsed irradiation of ultraviolet lightemitting diodes (UV-LEDs). Chemical Engineering Journal, 343, 362–370. https://doi.org/10.1016/j.cej.2018.03.020

Suslick, K. S., Eddingsaas, N. C., Flannigan, D. J., Hopkins, S. D., & Xu, H. (2011). Extreme conditions during multibubble cavitation: Sonoluminescence as a spectroscopic probe. Ultrasonics sonochemistry, 18(4), 842-846. https://doi.org/10.1016/j.ultsonch.2010.12.012

Tirado-Kulieva, V., Miranda Zamora, W. R., & Leyva Povis, N. L. (2021). Análisis crítico del potencial del plasma frío como tecnología no destructiva en el procesamiento alimentario: situación actual y tendencias futuras. Revista de La Universidad Del Zulia, 12(32), 284–316. https://doi.org/10.46925//rdluz.32.18

Ucar, Y., Ceylan, Z., Durmus, M., Tomar, O., & Cetinkaya, T. (2021). Application of cold plasma technology in the food industry and its combination with other emerging technologies. Trends in Food Science & Technology, 114, 355-371. https://doi.org/10.1016/j.tifs.2021.06.004

Valdivia-Nájar, C. G., Martín-Belloso, O., & Soliva-Fortuny, R. (2018). Kinetics of the changes in the antioxidant potential of fresh-cut tomatoes as affected by pulsed light treatments and storage time. Journal of Food Engineering, 237, 146-153. https://doi.org/10.1016/j.jfoodeng.2018.05.029

Vargas-Ramella, M., Pateiro, M., Gavahian, M., Franco, D., Zhang, W., Khaneghah, A. M., Guerrero-Sánchez, Y., & Lorenzo, J. M. (2021). Impact of pulsed light processing technology on phenolic compounds of fruits and vegetables. Trends in Food Science & Technology, 115, 1-11. https://doi.org/10.1016/j.tifs.2021.06.037

Viacava, F., Ortega-Hernández, E., Welti-Chanes, J., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2020). Using High Hydrostatic Pressure Processing Come-Up Time as an Innovative Tool to Induce the Biosynthesis of Free and Bound Phenolics in Whole Carrots. Food and Bioprocess Technology, 13, 1717–1727 https://doi.org/10.1007/s11947-020-02512-y

Waghmare, R. (2021). Cold plasma technology for fruit based beverages: A review. Trends in Food Science and Technology, 114, 60–69. https://doi.org/10.1016/j.tifs.2021.05.018

Wang, L., Boussetta, N., Lebovka, N., & Vorobiev, E. (2020). Cell disintegration of apple peels induced by pulsed electric field and efficiency of bio-compound extraction. Food and Bioproducts Processing, 122, 13-21. https://doi.org/10.1016/j.fbp.2020.03.004

Wang, Q., Li, Y., Sun, D. W., & Zhu, Z. (2018). Enhancing food processing by pulsed and high voltage electric fields: Principles and applications. Critical reviews in food science and nutrition, 58(13), 2285-2298. https://doi.org/10.1080/10408398.2018.1434609

Wojcik, A., & Harms-Ringdahl, M. (2019). Radiation protection biology then and now. International journal of radiation biology, 95(7), 841-850. https://doi.org/10.1080/09553002.2019.1589027

Woldemariam, H. W., & Emire, S. A. (2019). High Pressure Processing of Foods for Microbial and Mycotoxins Control: current trends and future prospects. Cogent Food and Agriculture, 5(1), 1622184. https://doi.org/10.1080/23311932.2019.1622184

Wolf, R. A. (2012). Atmospheric pressure plasma for surface modification. John Wiley & Sons.

Yanğıç Yüksel Ç, Karagözlü N. (2017). Soğuk Atmosferik Plazma Teknolojisi ve Gıdalarda Kullanımı. Adü Ziraat Dergisi, 14(2), 81-86. https://doi.org/10.25308/aduziraat.332684

Yasui, K., & Yasui, K. (2018). Acoustic cavitation (pp. 1-35). Springer International Publishing.

Yuan, S., Li, C., Zhang, Y., Yu, H., Xie, Y., Guo, Y., & Yao, W. (2021). Ultrasound as an emerging technology for the elimination of chemical contaminants in food: A review. Trends in Food Science & Technology, 109, 374-385. https://doi.org/10.1016/j.tifs.2021.01.048

Zadeh, J. H., Pazır, F. (2023). Investigation of the potential applications of cold plasma technology in food safety. GIDA, 48(3) 614-626. https://doi.org/10.15237/ gida.GD22102

Zhang, C., Lyu, X., Arshad, R. N., Aadil, R. M., Tong, Y., Zhao, W., & Yang, R. (2023). Pulsed electric field as a promising technology for solid foods processing: A review. Food Chemistry, 403, 134367. https://doi.org/10.1016/j.foodchem.2022.134367

Zhang, Z., Zhang, B., Yang, R., & Zhao, W. (2020). Recent Developments in the Preservation of Raw Fresh Food by Pulsed Electric Field. Food Reviews International, 1–19. https://doi.org/10.1080/87559129.2020.1860083

Zhao, H., Zhang, F., Hu, H., Liu, S., & Han, J. (2017). Experimental study on freezing of liquids under static magnetic field. Chinese Journal of Chemical Engineering, 25(9), 1288-1293. https://doi.org/10.1016/j.cjche.2016.10.026

Zhao, L., Zhang, Y., Guo, S., Xiong, W., Xia, H., Liu, W., Pan, Z., & Venkitasamy, C. (2017). Effect of irradiation on quality of vacuum-packed spicy beef chops. Journal of Food Quality, 2017. https://doi.org/10.1155/2017/1054523

Zhou, B., Lee, H., & Feng, H. (2012). Microbial decontamination of food by power ultrasound. In Microbial decontamination in the food industry (pp. 300-321). Woodhead Publishing. https://doi.org/10.1533/9780857095756.2.300

Published

2024-02-05

How to Cite

Paucar-Menacho, L. M. ., Moreno-Rojo, C. ., & Chuqui-Diestra, S. R. . (2024). Emerging non-thermal technologies in the food industry: Advances and potential applications in food processing. Scientia Agropecuaria, 15(1), 65-83. https://doi.org/10.17268/sci.agropecu.2024.006

Issue

Section

Review Articles

Most read articles by the same author(s)