Una prueba del teorema de Cayley-Hamilton utilizando geometría algebraica
DOI:
https://doi.org/10.17268/sel.mat.2021.02.09Palavras-chave:
Espacio afín, conjunto algebraico, variedad algebraica, Espacio afín, conjunto algebraico, variedad algebraica, topología de Zariski.Resumo
En este trabajo, probaremos el teorema de Cayley-Hamilton utilizando geometría algebraica. Veremos una prueba diferente a la que se ve en un curso de álgebra lineal, en este caso utilizaremos la topología de Zariski, luego nos aprovecharemos de que toda matriz cuadrada de orden nxn, con entradas en un cuerpo K, denotada por (aij)nxn puede ser vista como un elemento del espacio afín de dimensión nxn sobre el cuerpo K y gracias a esto podemos recurrir a los conjuntos algebraicos y a las variedades algebraicas para así obtener algunos resultados vistos en un curso de geometría algebraica y conseguir una prueba del teorema de Cayley-Hamilton.
Referências
Beshenov A. Invitación a la teoría de esquemas. Apuntes de clase. Universidad de El Salvador, 2019. Recuperado de https://cadadr.org/san-salvador/2019-esquemas/esquemas.pdf
Borges H, Tengan E. Álgebra comutativa em quatro movimentos. Projeto Euclides, Instituto de Matemática Pura e Aplicada (IMPA), 2015. Recuperado de https://loja.sbm.org.br/index.php/algebra-comutativa-em-quatro-movimentos.html
Cox D, Little J. O’Shea D. Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer, 2007. Recuperado de https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/Ideals%2C%20Varieties%2C%20and%20Algorithms%20%284th%20ed.%29%20%5BCox%2C%20Little%20%26%20O%27Shea%202015-06-14%5D.pdf
Fulton W. Algebraic curves: An introduction to algebraic geometry. University of Michigan, 2008. Recuperado de http://www.math.lsa.umich.edu/˜wfulton/CurveBook.pdf
Gathmann A. Algebraic Geometry-Notes. University of Kaiserslautern, 2003. Recuperado de https://www.mathematik.uni-kl.de/gathmann/class/alggeom-2002/alggeom-2002.pdf
Grillet PA. Abstract algebra. Graduate Texts in Mathematics. Editorial Board, Springer, 2000. Recuperado de http://dobrochan.ru/src/pdf/1204/Grillet_P._A.-Abstract_Algebra_(2007)(684).pdf
Hartshorne R. Algebraic Geometry. Graduated Texts in Mathematics, Editorial Board, Springer-Verlag, 1977. Recuperado de http://userpage.fu-berlin.de/aconstant/Alg2/Bib/Hartshorne.pdf
Jeffrey A, Rosoff G, College A. A topological proof of the Cayley-Hamilton theorem. Missouri Journal of Mathematical Sciences, 1995, 7(2):63-67. DOI: 10.35834/1995/0702063
Stanley I, Grossman S. Álgebra Lineal. University of Montana, University College London. Editorial McGraw-Hill, 2007. Recuperado de http://up-rid2.up.ac.pa:8080/xmlui/bitstream/handle/123456789/1326/%C3%81lgebra%20lineal.pdf?sequence=1&isAllowed=y
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Selecciones Matemáticas
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os autores que publicam nesta revista aceitam as seguintes condições:
Os autores mantêm os direitos autorais e atribuem à revista o direito da primeira publicação, com o trabalho registrado com a licença de atribuição Creative Commons Atribución 4.0 Internacional (CC BY 4.0), que permite que terceiros usem o material publicado sempre que mencionarem a autoria do trabalho e os direitos autorais. Primeira publicação nesta revista.
Os autores podem fazer outros acordos contratuais independentes e adicionais para a distribuição não exclusiva da versão do artigo publicada nesta revista (por exemplo, incluí-la em um repositório institucional ou publicá-la em um livro), desde que afirme claramente que o trabalho Foi publicado nesta revista.
É permitido e recomendado aos autores que publiquem seus trabalhos na Internet (por exemplo, em páginas institucionais ou pessoais) antes e durante o processo de revisão e publicação, pois isso pode levar a trocas produtivas e a uma disseminação maior e mais rápida do trabalho. publicado (Consultar: efeito do acesso aberto).