Polynomial Decay and Computational Numerical Modeling of Timoshenko beam with partial dissipation

Authors

  • Frank Henry Acasiete Quispe Laboratorio Nacional de Computación Científica, MCTIC, Petrópolis- Brasil
  • Neisser Pino Romero Universidad Peruana Cayetano Heredia, Universidad Nacional Mayor de San Marcos, Lima- Perú

DOI:

https://doi.org/10.17268/sel.mat.2018.02.04

Keywords:

Differential partial equations, beam, semigroup, polynomial stability

Abstract

We studied the uniform stabilization of a class of Timoshenko systems with partial dissipation of the beam. Our main result is to prove that the semigroup associated to this model has polynomial decay. Moreover, we prove that the semigroup decays polynomially to zero. The system decays polynomially with rate depending
on the coeficients of the problem. We also show the computational modeling of the system showing the results obtained theoretically.

References

Timoshenko, S. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philosophical Magazine. 1921; 41:744-746.

Kim, J.U. and Renardy, Y. Boundary control of the Timoshenko beam. SIAM J. Control Optim. 1987; 25:1417-1429.

Raposo, C.A., Ferreira, J., Santos, M.L., and Castro, N.N.O. Exponential stability for the Timoshenko system with two weak dampings. Appl. Math. Letters. 2005; 18:535-541.

Soufyane, A. andWehbe, A. Uniform stabilization for the Timoshenko beam by a locally distributed damping. Electron J. Diff. Equations. 2003; 29:1-14.

Kafini, M. General energy decay in a Timoshenko-type system of thermo-elasticity of type III with a viscoelastic damping. J. Math. Anal. Appl. 2011; 375:523-537.

Messaoudi, S.A., and Said-Houari, B. Energy decay in a Timoshenko-type system of thermo-elasticity of type III. J.Math. Anal. Appl. 2008; 348:298-307.

Messaoudi, S.A. and Mustafa, M.I. On the internal and boundary stabilization of Timoshenko beams. NoDEA Nonlinear Differential Equations Appl. 2008; 15:655-671.

Muñoz Rivera, J.E. and Avila, A.I. Rates of decay to non homogeneous timoshenko model with tip body. J. Diff. Equations. 2015; 258:3468-3490.

Muñoz Rivera, J.E. Estabilizacao de Semigrupos e Aplicacoes. LNCC-UFRJ. Brasil.2009, 1 edicaoo, 120 p.

Acasiete, F. Modelagem Computacional da viga de Timoshenko submetida a cargas pontuais. Dissertacao de Mestrado-LNCC. 2016.

Borichev, A. and Tomilov, Y. Optimal polynomial decay of functions and operator semigroups. Math. Ann. 2009; 347:455-478.

Strikwerda, J.C. Finite difference schemes and partial differential equations. SIAM. Philadelphia, 2004, 435 p.

Strauss, W., and A Vasquez, L. Numerical solution of a nonlinear klein-gordon equation. Journal of Computational Physics. 1978; 28:271-278.

Negreanu, M. and Zuazua, E. Uniform boundary controllability of a discrete 1-d wave equation. System and Control Letters. 2003; 48:261-280.

Published

2018-12-30

How to Cite

Acasiete Quispe, F. H., & Pino Romero, N. (2018). Polynomial Decay and Computational Numerical Modeling of Timoshenko beam with partial dissipation. Selecciones Matemáticas, 5(02), 164-174. https://doi.org/10.17268/sel.mat.2018.02.04

Most read articles by the same author(s)