A proof of the Cayley-Hamilton theorem using algebraic geometry

Authors

  • Carlos Mejía Alemán UNMSM
  • Irene Edith Núñez Rodriguez Programa de Estudios Generales, Universidad de Lima. Lima, Perú.
  • Rodolfo José Gálvez Pérez Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos. Lima, Perú.
  • Neisser Pino Romero Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Lima, Perú.

DOI:

https://doi.org/10.17268/sel.mat.2021.02.09

Keywords:

Affine space, algebraic set, algebraic manifold, Zariski topology

Abstract

In this work, we will prove the Cayley-Hamilton theorem using algebraic geometry. We will see a different proof than the one seen in a linear algebra course, in this case we will use the Zariski topology, then we will take advantage of the fact that every square matrix of order n _ n, with entries in a field K, denoted by (aij)n_n can be seen as an element of the affine space of dimension n _ n over the field K and thanks to this, we can resort to algebraic sets and algebraic varieties in order to obtain some results seen in an algebraic geometry and to get a proof of the Cayley-Hamilton theorem.

Author Biography

Carlos Mejía Alemán, UNMSM

Perú.

References

Beshenov A. Invitación a la teoría de esquemas. Apuntes de clase. Universidad de El Salvador, 2019. Recuperado de https://cadadr.org/san-salvador/2019-esquemas/esquemas.pdf

Borges H, Tengan E. Álgebra comutativa em quatro movimentos. Projeto Euclides, Instituto de Matemática Pura e Aplicada (IMPA), 2015. Recuperado de https://loja.sbm.org.br/index.php/algebra-comutativa-em-quatro-movimentos.html

Cox D, Little J. O’Shea D. Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer, 2007. Recuperado de https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/Ideals%2C%20Varieties%2C%20and%20Algorithms%20%284th%20ed.%29%20%5BCox%2C%20Little%20%26%20O%27Shea%202015-06-14%5D.pdf

Fulton W. Algebraic curves: An introduction to algebraic geometry. University of Michigan, 2008. Recuperado de http://www.math.lsa.umich.edu/˜wfulton/CurveBook.pdf

Gathmann A. Algebraic Geometry-Notes. University of Kaiserslautern, 2003. Recuperado de https://www.mathematik.uni-kl.de/gathmann/class/alggeom-2002/alggeom-2002.pdf

Grillet PA. Abstract algebra. Graduate Texts in Mathematics. Editorial Board, Springer, 2000. Recuperado de http://dobrochan.ru/src/pdf/1204/Grillet_P._A.-Abstract_Algebra_(2007)(684).pdf

Hartshorne R. Algebraic Geometry. Graduated Texts in Mathematics, Editorial Board, Springer-Verlag, 1977. Recuperado de http://userpage.fu-berlin.de/aconstant/Alg2/Bib/Hartshorne.pdf

Jeffrey A, Rosoff G, College A. A topological proof of the Cayley-Hamilton theorem. Missouri Journal of Mathematical Sciences, 1995, 7(2):63-67. DOI: 10.35834/1995/0702063

Stanley I, Grossman S. Álgebra Lineal. University of Montana, University College London. Editorial McGraw-Hill, 2007. Recuperado de http://up-rid2.up.ac.pa:8080/xmlui/bitstream/handle/123456789/1326/%C3%81lgebra%20lineal.pdf?sequence=1&isAllowed=y

Published

2021-12-27

How to Cite

Mejía Alemán, C., Núñez Rodriguez, I. E., Gálvez Pérez, R. J., & Pino Romero, N. (2021). A proof of the Cayley-Hamilton theorem using algebraic geometry. Selecciones Matemáticas, 8(02), 326-332. https://doi.org/10.17268/sel.mat.2021.02.09

Most read articles by the same author(s)