Computational modeling of the dynamics of sexual transmission of HIV/AIDS through cellular automats (Cell-DEVS)
DOI:
https://doi.org/10.17268/sel.mat.2018.01.06Keywords:
Mathematical Epidemiology, Ordinary differential equations, Cellular Automata, DEVS formalism, Computational SimulationsAbstract
In the present research article, a computational model is developed by means of cellular automatas (Cell-DEVS) that describes the transmission dynamics of HIV / AIDS in a closed group of heterosexual people who are sexually active. From the perspective of the mathematical epidemiology we have the mathematical model SI of W. O. Kermack and A. G. McKendrick that represents the dynamics of the sexually transmitted disease by means of the ordinary differential equations. Where
computational simulations will be carried out both by numerical methods and cellular automatas to analyze the evolution of the disease over time, and how the results obtained can be interpreted to generate adequate intervention activities as part of public politics.
References
Anderson, R.M. Population Dynamics of Infectious Diseases: Theory and Applications, Chapman and Hall, London-New York. DOI: https://doi:org/10;1007/978-1-4899-2901-3. Online ISBN: 978-1-4899-2901 -3, (2014).
Brauer, F., Castillo-Chávez, C. Mathematical Models in Population Biology and Epidemiology, (2001). NY: Springer. DOI: 10;1007/978-1-4757-3516-1.eBook ISBN: 978 -1-4757-3516-1
Capasso, V., Serio, G. A generalization of the Kermack-McKendrick deterministic epidemic model (1978). Mathematical Biosciences, 42(1-2), 43-61. DOI: https://doi:org/10;1016/00255564p78q90006-8
Dirección General de Epidemiología. Vigilancia, Prevención y Control del VIH (2017). Ministerio de Salud. Perú.
Dirección General de Epidemiología. Sala situacional para el Análisis de Situación de Salud - SE 30-2017. Ministerio de Salud. Perú. Recuperado de http://www:dge:gob:pe/portal/docs/vigilancia/vih/Boletin2017/marzo:pdf
Kofman, E., Fernández, J. Simulación de Sistemas Continuos por Eventos Discretos, Departamento de Control. Facultad de Ciencias Exactas, Ingeniería Agrimensura. Universidad Nacional de Rosario. (2014). Recuperado de http://fceia:unr:edu:ar/kofman{files{tesis:pdf.
Mesa Mazo M., Vergao Salazar J., Sanchez Botero C., Muñoz Loaiza A. Modelo matemático para la dinámica de transmisión del VIH/SIDA en una población sexualmente activa. Universidad de Quindio, Armenio, Colombia. Rev. Salud Pública (2010). 12, p.p. 308-316. ISSN electrónico 2539-3596. DOI https://doi:org/10;1590/S0124-00642010000200014. Recuperado de https://revistas:unal:edu:co/index:php/revsaludpublica/article/view{33229{33214
Murray J.D., Mathematical Biology I: Spatial models and medical applications, Springer. Third edition. vol 18. DOI:10;1007/b98868. eBook ISBN: 978-0-387-22437-4, (2003).
ONUSIDA. Acción acelerada para acabar con el sida. UNAIDS 2016. Recuperado de http://www:unaids:org/sites/default/files{media_asset{UNAIDS-strategy- 2016-2021es:pdf
Pino Romero, N. Modelo matemático para la dinámica de transmisión del VIH/SIDA en una población heterosexual activa en el Perú. Facultad de Ciencias Matemáticas, UNMSM (2013).
Pino Romero, N., López Cruz, R., Wainer, G. Modelamiento Computacional de la Dinámica de Transmisión de la Varicela mediante Autómatas Celulares (Cell-DEVS). Pesquimat, (2017), 20(2), 53-64. Recuperado de DOI: http://dx:doi:org/10;15381/pes:v20i2;13969
Toffoli, T., Margolus, N. Cellular automata machines: A new environment for modeling Cambridge, MA:MIT Press. ISBN: 9780262200608, (1987).
Trottier, H., Philippe, P. Deterministic modeling of infectious diseases: theory and methods (2001). The Internet Journal of Infectious Diseases. Volumen 2 Number 1. Recuperado de https://print:ispub:com/api/0/ispub-article/5230
Wainer, G., Giambiasi, N. N-dimensional Cell-DEVS. Discrete Events Systems: Theory and Applications (2002). 12:135-157. DOI https://doi:org/10;1023/A:1014536803451. Online ISSN: 1573-7594.
Wainer, G. Discrete-Event cellular models with explicit delays. PhD thesis, Université d’Aix-Marseille III, France, (1998).
Wolfram, S. Computation Theory of cellular automata. Commun. Math. Phys. 96, 15- 57 (1984). Springer-Verlag. Recuperado de http://www.stephenwolfram.com/ publications/academic/computation-theorycellular-automata.pdf.
Zeigler Bernard. Theory of Modeling and Simulation (1976). Society for Computer Simulation International, San Diego,(First Ed.)
Published
How to Cite
Issue
Section
License
The authors who publish in this journal accept the following conditions:
1. The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution License,Atribución 4.0 Internacional (CC BY 4.0) which allows third parties to use what is published whenever they mention the authorship of the work And to the first publication in this magazine.
2. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly state that The paper was first published in this journal.
3. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and to a greater and more rapid dissemination Of the published work.