Quinoa (Chenopodium quinoa): Nutritional composition and bioactive compounds of grain and leaf, and impact of heat treatment and germination

Authors

  • Yordi Campos-Rodriguez Universidad Nacional del Santa, Facultad de Ingeniería, Departamento de Ingeniería Agroindustrial y Agrónoma, Av. Universitaria s/n, Urb. Bellamar, Nuevo Chimbote, Ancash, Perú
  • Katherin Acosta-Coral Universidad Nacional del Santa, Facultad de Ingeniería, Departamento de Ingeniería Agroindustrial y Agrónoma, Av. Universitaria s/n, Urb. Bellamar, Nuevo Chimbote, Ancash, Perú
  • Luz María Paucar-Menacho Universidad Nacional del Santa

DOI:

https://doi.org/10.17268/sci.agropecu.2022.019

Keywords:

Quinoa leaves, pseudocereal, amino acids, heat treatments, germination

Abstract

Quinoa (Chenopodium quinoa) is an Andean pseudocereal produced in countries such as Bolivia, Peru, Ecuador and southern Colombia, with more than 3,000 varieties, distinguished by their nutritional properties and adaptation to different agro-ecological zones. Quinoa's nutritional profile stands out for its protein, carbohydrate, lipid and gluten-free content; it is rich in vitamins; and it is an excellent source of minerals, such as calcium, magnesium, iron and phosphorus. It is one of the few foods that have in its composition all the essential amino acids, standing out from other cereals such as rice or wheat. It is an excellent source of bioactive compounds, which have antioxidant, cytotoxic, antidiabetic and anti-inflammatory properties. With respect to quinoa leaves, several studies have indicated that they have higher protein content than grains, as well as inorganic nutrients such as calcium, phosphorus, iron and zinc. In addition, they can potentially serve as a rich source of phenolic compounds and carotenoids. Conventional heat treatments greatly or slightly affect the composition of the food, including bioactive compounds and antioxidant capacity. Germination provides the product with greater bioavailability and an increase in bioactive compounds. The purpose of this work was to document research on quinoa and its leaves, the effect of thermal treatments and germination on its bioactive compounds, in order to promote the creation and innovation of products based on its bioactive compounds, thus combating malnutrition in our population.

References

Abd, E. H., Hussin, S. A., El-Naggar, A. M., El-Bordeny, N. E., & Eisa, S. S. (2018). The potential use of quinoa as a new non-traditional leafy vegetable crop. Bioscience Research, 15(4), 3387-3403.

Abdelaleem, M., & Elbassiony, K. (2021). Evaluation of phytochemicals and antioxidant activity of gamma irradiated quinoa (Chenopodium quinoa). Brazilian Journal of Biology, 81(3), 806-813.

Aderibigbe, O. R., Ezekiel, O. O., Owolade, S. O., Korese, J. K., Sturm, B., & Hensel, O. (2022). Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A review. Critical Reviews in Food Science and Nutrition, 62(3), 656-669.

ALADI & FAO (2014). Tendencias y Perspectivas del comercio Internacional de la Quinua. Organización de las Naciones Unidas para la Alimentación y la Agricultura.

Al-Qabba, M. M., El-Mowafy, M. A., Althwab, S. A., Alfheeaid, H. A., Aljutaily, T., & Barakat, H. (2020). Phenolic profile, antioxidant activity, and ameliorating efficacy of Chenopodium quinoa sprouts against CCl4-induced oxidative stress in rats. Nutrients, 12(10), 2904.

Antonio, A. L., Carocho, M., Bento, A., Quintana, B., Botelho, M., & Ferreira, I. C. (2012). Effects of gamma radiation on the biological, physicochemical, nutritional and antioxidant parameters of chestnuts – A review. Food and Chemical Toxicology, 50(9), 3234-3242.

Asao, M., & Watanabe, K. (2010). Functional and bioactive properties of quinoa and amaranth. Food Science and Technology Research, 16, 163–168.

Babiker, E. E., Uslu, N., Ghafoor, K., AL-Juhaimi, F., Özcan, M. M., & Ahmed, I. A. M. (2022). Variations in bioactive properties, fatty acid compositions, and phenolic compounds of quinoa grain and oils roasted in a pan. Journal of Food Processing and Preservation, 46, e16161.

Balakrishnan, G., & Schneider, R. G. (2020). Quinoa flavonoids and their bioaccessibility during in vitro gastrointestinal digestion. Journal of Cereal Science, 95, 103070.

Basantes-Morales, E., Alconada, M., & Pantoja, J. (2019). Quinoa (Chenopodium quinoa Willd) production in the Andean region: challenges and potentials. Journal of Experimental Agriculture International, 36(6), 1-18.

Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F., & Galieni, A. (2019). Sprouted grains: A comprehensive review. Nutrients, 11(2), 1-29.

Bhargava, A., & Ohri, D. (2016). Origin of Genetic Variability and Improvement of Quinoa (Chenopodium quinoa Willd.). En V., Rajpal, S., Rao, S. Raina (Eds.), Gene Pool Diversity and Crop Improvement (pp. 241-270). Springer International Publishing.

Bhargava, A., Shukla, S., & Ohri, D. (2006). Chenopodium quinoa—An Indian perspective. Industrial Crops and Products, 23(1), 73-87.

Bhinder, S., Kumari, S., Singh, B., Kaur, A., & Singh, N. (2021). Impact of germination on phenolic composition, antioxidant properties, antinutritional factors, mineral content and Maillard reaction products of malted quinoa flour. Food Chemistry. 346, 128915.

Carciochi, R., Galván, L., & Manrique, G. (2016). Effect of roasting conditions on the antioxidant compounds of quinoa seeds. International Journal of Food Science & Technology, 51(4), 1018–1025.

Carciochi, R., Manrique, G., & Dimitrov, K. (2014). Changes in phenolic composition and antioxidant activity during germination of quinoa seeds (Chenopodium quinoa Willd.). International Food Research Journal 21(2), 767-773.

Castro, W., Oblitas, J., Chuquizuta, T., & Avila-George, H. (2017). Application of image analysis to optimization of the bread-making process based on the acceptability of the crust color. Journal of Cereal Science, 74, 194–199.

Chacaliaza-Rodriguez, L., Espinoza-Begazo, G., Ramos-Escudero, F., & Servan, K. (2016). Proximate chemical composition and content of biologically active components in leaves of two quinoa cultivars (Salcedo and Altiplano) produced in Peru. Research Journal of Medicinal Plants, 10, 450-456.

Collar, C. (2016). Quinoa. En B., Caballero, P. M., Finglas, F. Toldrà (Eds.), Encyclopedia of Food and Health (pp. 573-579). Academic Press.

Dakhili, S., Abdolalizadeh, L., Marzieh, S., Shojaee-Aliabadi, S., & Mirmoghtadaie, L. (2019). Quinoa protein: Composition, structure and functional properties. Food Chemistry, 299, 125-161.

Darwish, A. M., Al-Jumayi, H. A., & Elhendy, H. A. (2020). Effect of germination on the nutritional profile of quinoa (Cheopodium quinoa Willd.) seeds and its anti-anemic potential in Sprague–Dawley male albino rats. Cereal Chemistry, 98(2), 315-327.

Dini, I., Tenore, G. C., & Dini, A. (2010). Antioxidant compound contents and antioxidant activity before and after cooking in sweet and bitter Chenopodium quinoa seeds. LWT - Food Science and Technology, 43(3), 447–451.

El-Hazzam, K., Hafsa, J., Sobeh, M., Mhada, M., Taourirte, M., et al. (2020). An insight into saponins from quinoa (Chenopodium quinoa Willd): A review. Molecules, 25(5), 1059.

El-Samad, E., Hussin, S., El-Naggar, A., El-Bordeny, N., & Eisa, S. (2018). The potential use of quinoa as a new non-traditional leafy vegetable crop. Bioscience Research, 15(4), 3387–3403.

El-Sayed, S. M. (2020). Use of spinach powder as functional ingredient in the manufacture of UF-Soft cheese. Heliyon, 6(1), e03278.

Elsohaimy, S. A., Refaay, T. M., & Zaytoun, M. A. M. (2015). Physicochemical and functional properties of quinoa protein isolate. Annals of Agricultural Sciences, 60(2), 297-305.

Esfanjani, A., Assadpour, E., & Jafari, S. (2018). Improving the biovailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends in Food Science & Technology. 76, 56-66

Gamboa, C., Van, G., & Maertens, M. (2018). Smallholders’ Preferences for Improved Quinoa Varieties in the Peruvian Andes. Sustainability, 10(10), 3735.

Gan, R. Y., Lui, W. Y., Wu, K., Chan, C. L., Dai, S. H., Sui, Z. Q., & Corke, H. (2017). Bioactive compounds and bioactivities of germinated edible seeds and sprouts: an updated review. Trends in Food Science & Technology, 59, 1-14.

Gandia-Herrero, F., Escribano, J., & Garcia-Carmona, F. (2016). Biological activities of plant pigments betalains. Critical Reviews in Food Science and Nutrition, 56, 937-945.

Garcia-Mazcorro, J. F., Mills, D., & Noratto, G. (2016). Molecular exploration of fecal microbiome in quinoa-supplemented obese mice. FEMS Microbiology Ecology, 92(7), fiw089.

Gawlik-Dziki, U., Swieca, M., Sułkowski, M., Dziki, D., Baraniak, B., & Czyz, J. (2013). Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts – In vitro study. Food and Chemical Toxicology, 57, 154-160.

Goh, H., & Lee, Y. (2017). Effects of heat treatments on physicochemical properties and in vitro biological activities of quinoa (Chenopodium quinoa Willd.). Journal of the Korean Society of Food Science and Nutrition, 46(6), 688-694.

Gomez, L., & Eguiluz, A. (2011). Catálogo del Banco de Germoplasma de Quinua. Lima, Peru: Universidad Nacional Agraria la Molina.

González-García, S., Esteve-Llorens, X., Moreira, M. T., & Feijoo, G. (2018). Carbon footprint and nutritional quality of different human dietary choices. Science of The Total Environment, 644, 77-94.

Gordillo-Bastidas, E., Díaz-Rizzolo, D. A., Roura, E., Massanés, T. & Gomis, R. (2016). Quinoa (Chenopodium quinoa Willd), from nutritional value to potential health benefits: An integrative review. Journal of Nutrition & Food Sciences, 6(3), 1000497.

Graf, B. L., Poulev, A., Kuhn, P., Grace, M. H., Lila, M. A., & Raskin, I. (2014). Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties. Food Chemistry, 163, 178–185.

Gu, R., Chang, X., Bai, G., Li, X., Di, Y., et al. (2021). Effects of household cooking methods on changes of tissue structure, phenolic antioxidant capacity and active component bioaccessibility of quinoa. Food Chemistry, 350, 129138.

Harrison, K., & Were, L. (2007). Effect of gamma irradiation on total phenolic content yield and antioxidant capacity of almond skin extracts. Food Chemistry, 102(3), 932-937.

Hernández-Ledesma, B. (2019). Quinoa (Chenopodium quinoa Willd.) as source of bioactive compounds: A review. Bioactive Compounds in Health and Disease, 2(3), 27–47.

Jancurová, M., Minarovičová, L., & Dandár, A. (2009). Quinoa – A rewiev. Czech Journal of Food Sciences, 27(2), 71–79.

Jin, M., Jeon, A., Kwon, J., Kim, N., & Kim, Y. (2021). Effects of roasting temperature on quality characteristics and biological activity of quinoa. Journal of the Korean Society of Food Culture, 36(3), 308–316.

Kaur, I., Tanwar, B., Reddy, M., & Chauhan, A. (2016). Vitamin C, total polyphenols and antioxidant activity in raw, domestically processed and industrially processed Indian Chenopodium quinoa seeds. Journal of Applied Pharmaceutical Science. 6(4), 139-145.

Ketharin, T., Shie, L., Paulraj, P., Javad, P., Sajeesh, P., et al. (2019). Effect of heat treatment on the bioactive components and antioxidant activity in selected dry beans and nuts. Journal of Pure and Applied Microbiology, 13(2), 915-922.

Koch, W. (2019). Dietary polyphenols-important non-nutrients in the prevention of chronic noncommunicable diseases. Systematic Reviews, 11, 1039.

Lin, M., Han, P., Li, Y., Wang, W., Lai, D., & Zhou, L. (2019). Quinoa secondary metabolites and their biological activities or functions. Molecules, 24(13), 2512.

Liu, M., Zhu, K., Yao, Y., Chen, Y., Guo, H., et al. (2020). Antioxidant, anti-inflammatory, and antitumor activities of phenolic compounds from white, red, and black Chenopodium quinoa seed. Cereal Chemistry, 97(3), 703–713.

Maghsoudlou, Y., Asghari, M., & Tavasoli, S. (2019). Effects of heat treatment on the phenolic compounds and antioxidant capacity of quince fruit and its tisane’s sensory properties. Journal of Food Science and Technology, 56(5), 2365–2372.

Malpartida, S. (2017). Caracterización nutricional y compuestos bioactivos de las hojas de ocho variedades comerciales de quinua (Chenopodium quinoa w.).(Tesis de título). Universidad Nacional Hermilio Valdizán. Perú.

Mamani, D., Gutierrez M., Serrudo J., & Gonzales, E. (2017). Parámetros de calidad de harinas de Amaranthus caudatus Linnaeus (amaranto), Chenopodium quinoa Willd (quinua), Chenopodium pallidicaule Aellen (kañahua), Lupinus mutabilis Sweet (tarwi). Revista CON-CIENCIA, 5(1), 27-38.

Melini, F., & Melini, V. (2021). Impact of fermentation on phenolic compounds and antioxidant capacity of quinoa. Fermentation, 7(1), 20.

Mohyuddin, S., Riaz, A., Qamar, A., Ali, S., Hu, C., et al. (2019). Quinoa is beneficial to the comprehensive nutritional value of potential health. Pakistan Journal of Science, 71(2), 69-74.

Moreiras, O., Carbajal, A., Cabrera, L., & Cuadrado, C. (2013). Tablas de composición de alimentos. Pirámide.

Muller, L., Caris-Veyrat, C., Lowe, G., & Bohm, V. (2016). Lycopene and its antioxidant role in the prevention of cardiovascular diseases - A critical review. Critical Reviews in Food Science and Nutrition, 56, 1868–1879.

Multari, S., Marsol-Vall, A., Keskitalo, M., Yang, B., & Suomela, J. P. (2018). Effects of different drying temperatures on the content of phenolic compounds and carotenoids in quinoa seeds (Chenopodium quinoa) from Finland. Journal of Food Composition and Analysis, 72, 75-82.

Nemzer, B., Al-Taher, F., & Abshiru, N. (2020). Phytochemical composition and nutritional value of different plant parts in two cul-tivated and wild purslane (Portulaca oleracea L.) genotypes. Food Chemistry, 320(2), 126621-126630

Nickel, J., Spanier, L. P., Botelho, F. T., Gularte, M. A., & Helbig, E. (2016). Effect of different types of processing on the total phenolic compound content, antioxidant capacity, and saponin content of Chenopodium quinoa Willd grains. Food Chemistry, 209, 139–143.

Nowak, V., Du, J., & Charrondière, U. R. (2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 193, 47-54.

Padmashree, A., Negi, N., Handu, S., Khan, M. A., Semwal, A. D., & Sharma, G. K. (2018). Effect of germination on nutritional, antinutritional and rheological characteristics of quinoa (Chenopodium quinoa). Defence Life Science Journal, 4(1), 55–60.

Palombini, S. V., Claus, T., Maruyama, S. A., Gohara, A. K., Souza, A. H. P., et al. (2013). Evaluation of nutritional compounds in new amaranth and quinoa cultivars. Food Science and Technology, 33(2), 339-344.

Pathan, S., & Siddiqui, R. A. (2022). Nutritional Composition and Bioactive Components in Quinoa (Chenopodium quinoa Willd.) Greens: A Review. Nutrients, 14(3), 1-12.

Pathan, S., Eivazi, F., Valliyodan, B., Paul, K., Ndunguru, G., & Clark, K. (2019). Nutritional Composition of the Green Leaves of Quinoa (Chenopodium quinoa Willd.). Journal of Food Research, 8(6), 55-65.

Paucar-Menacho, L., Dueñas, M., Peñas, E., Frias, J., & Martínez-Villaluenga, C. (2018). Effect of dry heat puffi ng on nutritional composition, fatty acid, amino acid and phenolic profi les of pseudocereals grains. Polish Journal of Food and Nutrition Sciences, 68(4),289–297.

Paucar-Menacho, L., Martínez-Villaluenga, C., Dueñas, M., Frias, J., & Penas, E. (2017). Response surface optimisation of germination conditions to improve the accumulation of bioactive compounds and the antioxidant activity in quinoa. International Journal of Food Science and Technology. 53(2), 516-524.

Paucar-Menacho, L., Peñas, E., Dueñas, M., & Martínez-Villaluenga, C. (2017). Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. Food Science and Technology, 76, 245-252.

Peiretti, P., Gai, F., & Tassone, S. (2013). Fatty acid profile and nutritive value of quinoa (Chenopodium quinoa Willd.) seeds and plants at different growth stages. Animal Feed Science and Technology, 183(1), 56-61.

Peñas, E., Uberti, F., Lorenzo, C., Ballabio, C., Brandolini, A., & Restani, P. (2014). Biochemical and immunochemical evidences supporting the inclusion of quinoa (Chenopodium quinoa Willd.) as a gluten-free ingredient. Plant Foods for Human Nutrition, 69, 297– 303.

Pereira, E., Encina-Zelada, C., Barros, L., Gonzales-Barron, U., Cadavez, V., & Ferreira C.F.R., (2019). Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa). Food Chemistry, 280, 110-114.

Pilco-Quesada, S., Tian, Y., Yang, B., Repo-Carrasco-Valencia, R., & Suomela, J. P. (2020). Effects of germination and kilning on the phenolic compounds and nutritional properties of quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus). Journal of Cereal Science, 90, 102996.

Präger, A., Munz, S., Nkebiwe, P., Mast, B., & Graeff-Hönninger, S. (2018). Yield and quality characteristics of different quinoa (Chenopodium quinoa Willd.) cultivars grown under field conditions in Southwestern Germany. Agronomy, 8(10), 197.

Ramírez, G., & Estefano, M. (2018). Características funcionales y nutricionales de la quinua y el amaranto, para mejorar el estado nutricional de los preescolares en Ecuador (Tesis de Licenciatura). Universidad Estatal De Milagro, Milagro, Ecuador.

Ramos, A., Limaylla, K., Romero, T., & Lopes, F. (2016). Hydration kinetics of four quinoa (Chenopodium quinoa Wild.) varieties. Revista Colombiana de Investigaciones Agroindustriales, 3(1), 23-33.

Razzeto, G., Uñates, M., Moreno, J., López, R., Aguilar, E., et al. (2019). Evaluation and comparative study of the nutritional profile and antioxidant potential of new quinoa varieties. Asian Journal of Agricultural and Horticultural Research, 3(3), 1-11.

Repo-Carrasco-Valencia, R., & Vidaurre-Ruiz, J. (2019). Quinoa and Other Andean Ancient Grains: Super Grains for the Future. Cereal Foods World, 6(5), 1-10.

Repo-Carrasco-Valencia, R., Hellstrom, J. K., Pihlava, J. M. & Mattila, P. H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: quinoa (Chenopodium quinoa), kaniwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 120, 128–133.

Rojas, W., Vargas, A., & Pinto, M. (2016). La diversidad genética de la quinua: potenciales usos en el mejoramiento y agroindustria. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 3(2), 114-124.

Ruiz, K. B., Khakimov, B., Engelsen, S. B., Bak, S., Biondi, S., & Jacobsen, S. E. (2017). Quinoa seed coats as an expanding and sustainable source of bioactive compounds: An investigation of genotypic diversity in saponin profiles. Industrial Crops and Products, 104, 156–163.

Sharma, S., Kataria, A., & Singh, B. (2022). Effect of thermal processing on the bioactive compounds, antioxidative, antinutritional and functional characteristics of quinoa (Chenopodium quinoa). LWT, 160, 113256.

Shi, D., Fidelis, M., Ren, Y., Stone, A. K., Ai, Y., & Nickerson, M. T. (2020). The functional attributes of Peruvian (Kankolla and Blanca juli blend) and Northern quinoa (NQ94PT) flours and protein isolates, and their protein quality. Food Research International, 128, 108799.

Singh, A., Rehal, J., Kaur, A., & Jyot, G. (2015). Enhancement of attributes of cereal by germination and fermentation: A review. Critical Reviews in Food Science and Nutrition, 55(11), 1575-1589.

Snagronis, E., & Machado, C. (2007). Influence of germination on the nutrional quality of Plaseolus vulgaris and Cajanus cajan. LWT - Food Science and Technology. 40(1), 116-120.

Soladoye, O. P., Juárez, M. L., Aalhus, J. L., Shand, P., & Estévez, M. (2015). Protein oxidation in processed meat: Mechanisms and potential implications on human health. Comprehensive Reviews Food Science and Food Safety, 14, 106–122.

Son, A. M., Pirozi, M. R, Borges, J. T, Pinheiro, H. M, Chaves, J. B., & Coimbra, J. S. (2017). Quinoa: Nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 57(8), 1618-1630.

Stoleru, V., Jacobsen, S. E., Vitanescu, M., Jitareanu, G., Butnariu, M., et al. (2022). Nutritional and antinutritional compounds in leaves of quinoa. Food Bioscience, 45, 101494.

Suarez-Estrella, D., Torri, L., Pagani, M. A., & Marti, A. (2018). Quinoa bitterness: Causes and solutions for improving product acceptability. Journal of the Science of Food and Agriculture, 98, 4033-4041.

Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R., & Tsao, R. (2015). Characterization of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 166, 380–388.

Tanwar, B., Goyal, A., Irshaan, S., Kumar, V., Sihag, M. K., Patel, A., & Kaur, I. (2019). Quinoa. En J., Johnson, T., Wallace (Eds.), Whole Grains and their Bioactives: Composition and Health (pp. 269–305). John Wiley & Sons Ltd.

Tirado, D. F., Montero, P. M., & Acevedo, D. (2015). Aceptabilidad sensorial y calidad microbiológica de bebidas a base de arroz y plasma bovino y porcino. Información Tecnológica, 26(6), 45–54.

Torres, J. (2019). Efecto comparativo de las variaciones producidas en los constituyentes funcionales y capacidad antioxidante durante el procesamiento de harinas tostadas de quinua (Chenopodium quinoa Wild), cañihua (Chenopodium pallidicaule Aellen) y kiwicha (Amaranthus caudatus L.). Tesis de maestría. Universidad Nacional de San Antonio Abad del Cusco. Perú.

Valcárcel-Yamani, B., & Lannes, S. (2012). Aplicaciones de quinua (Chenopodium quinoa Willd.) y amaranto (Amaranthus spp.) y su influencia en el valor nutritivo de alimentos a base de cereales. Salud pública alimentaria, 2, 265–275.

Valencia, Z., Cámaraa, F., Ccapab, K., Atacorab, P., & Quispeb, F. (2017). Compuestos bioactivos y actividad antioxidante de semillas de quinua peruana (Chenopodium quinoa W.). Revista de la Sociedad Química del Perú, 83(1), 16-29.

Valencia-Reyes, Z., Güere, F., Zorrilla-Tarazona, E., Fuster-Guillen, D., & Vertiz-Osores, J. (2021). Efecto de la cocción en el contenido de compuestos bioactivos en quinua (Chenopodium quinoaWilld) de diferentes variedades de Perú. Revista Científica Nexo, 36(6), 1550-1561.

Vargas, P., Arteaga, R., & Cruz, L. (2019). Análisis bibliográfico sobre el potencial nutricional de la quinua (Chenopodium quinoa) como alimento funcional. Centro Azúcar, 46(4), 89-100.

Vazquez-Luna, A., Cortés, V. P., Carmona, F. F., & Díaz-Sobac, R. (2019). Quinoa leaf as a nutritional alternative. Ciencia e Investigación Agraria, 46(2), 137-143.

Ventosa, M., Rodríguez, J., & Zerquira, O. (2008). Determinación de los principales carotenoides de la guayaba (Psidium guayava L.). Ciencia y Tecnología de Alimentos, 18(1), 1-3.

Vilcacundo, R., & Hernández, B. (2017). Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Currrent Opinion in Food Science, 14, 1-6.

Villacrés, E., Quelal, M., Galarza, S., Iza, D., & Silva, E. (2022). Nutritional value and bioactive compounds of leaves and grains from quinoa (Chenopodium quinoa Willd.). Plants, 11(2), 1–11.

Yadav, R. K., Tomar, B. S., Pachauri, N., & Jain, V. (2018). Studies of nutritional properties and antioxidant potential in green leafy vegetables. Journal of the Science of Food and Agriculture, 2(1), 7-13.

Złotek, U., Gawlik-Dziki, U., Dziki, D., Swieca, M., Nowak, R., & Martinez, E. (2019). Influence of drying temperature on phenolic acids composition and antioxidant activity of sprouts and leaves of white and red quinoa. Journal of Chemistry, 2019, 7125169.

Gopalan, C., Rama, B., & Balasubramanian, S. (2007). Nutritive value of Indian foods. Hyderabad: National Institute of Nutrition (NIN), ICMR.

Pasko, P., Sajewicz, M., Gorinstein, S., & Zachwieja, Z. (2008). Analysis of selected phenolic acids and flavonoids in Amaranthus cruentus and Chenopodium quinoa Seeds and Sprouts by HPLC. Acta Chromomatographica 20, 661-672.

Kataria, A., Sharma, S., & Khatkar, S. (2021). Antioxidative, structural and thermal characterisation of simulated fermented matrix of quinoa, chia and teff with caseinate. Institute of Food Science & Technology.

Brady, K., Ho, C., Rosen, R., Sang, S., & Karwe, M. (2007). Effects of processing on the nutraceutical profile of quinoa. Food Chemistry, 100(3), 1209-1216.

Published

2022-08-08

How to Cite

Campos-Rodriguez, Y., Acosta-Coral, K., & Paucar-Menacho, L. M. (2022). Quinoa (Chenopodium quinoa): Nutritional composition and bioactive compounds of grain and leaf, and impact of heat treatment and germination. Scientia Agropecuaria, 13(3), 209-220. https://doi.org/10.17268/sci.agropecu.2022.019

Issue

Section

Review Articles

Most read articles by the same author(s)