Ultrasound-assisted grain hydration and its effect on starches: A review

Authors

  • Gilmer Ponce-Quispe Escuela de Ingeniería Agroindustrial, Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo. Av. Juan Pablo II, s/n – Ciudad Universitaria, Trujillo.
  • Raúl Siche Escuela de Ingeniería Agroindustrial, Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo. Av. Juan Pablo II, s/n – Ciudad Universitaria, Trujillo.

DOI:

https://doi.org/10.17268/agroind.sci.2022.03.16

Keywords:

sonication, humidification, starch, soaking, dry beans

Abstract

In the hydration of grains, it is sought to develop novel approaches to reduce the kinetic time and obtain better properties by taking advantage of the time to incorporate nutrients. This review seeks to publicize the potential of ultrasound in seed hydration and its effect on the properties of starches. It has been found that ultrasound accelerates the hydration and germination process in the grains without altering the properties of starch, and the extraction of alkaloids, it reduces the cooking time with ferrous sulfate, but at high temperatures, it hinders the effect of ultrasound. Adding sodium bicarbonate accelerates the softening kinetics, but slows down the hydration process. In quality parameters, zoning and thermal treatments cause an increase in the size of the granules and improve the rate of incorporation of water, obtaining better characteristics suitable for use in industry. Future studies could use other nutrients or salt solutions in the hydration process such as sodium bisulfate (NaHSO4), sodium bisulfite (NaHSO3) and ferrous fumarate (C4H2FeO4), as well as investigate other grains such as chickpeas, lentils and popping beans and Andean grains.

References

Baldwin, P. M. (2001). Starch granule-associated proteins and polypeptides: A review. Starch/Staerke, 53(10), 475–503.

Barrera, G. N., Bustos, M. C., Iturriaga, L., Flores, S. K., León, A. E., & Ribotta, P. D. (2013). Effect of damaged starch on the rheological properties of wheat starch suspensions. Journal of Food Engineering, 116(1), 233–239.

BeMiller, J. N. (2018). Carbohydrate chemistry for food scientists. Carbohydrate Chemistry for Food Scientists, 41(5), 1–427.

Bento, J. A. C., Ferreira, K. C., Fidelis, M. C., Souza Neto, M. A. de, Paixão e Silva, G. de L., Bataus, L. A. M., Caliari, M., & Soares Júnior, M. S. (2021). Ultrasound Modification of White Garland-Lily Starch: Functional, Thermal, and Pasting Properties. Starch/Staerke, 73(3–4).

Borsato, V. M., Jorge, L. M. M., Mathias, A. L., & Jorge, R. M. M. (2019). Ultrasound assisted hydration improves the quality of the malt barley. Journal of Food Process Engineering, 42(6), 1–10.

Briffaz, A., Mestres, C., Escoute, J., Lartaud, M., & Dornier, M. (2012). Starch gelatinization distribution and peripheral cell disruption in cooking rice grains monitored by microscopy. Journal of Cereal Science, 56(3), 699–705.

Chang, R., Xiong, L., Li, M., Wang, Y., Lin, M., Qiu, L., Bian, X., Sun, C., & Sun, Q. (2020). Interactions between debranched starch and emulsifiers, polyphenols, and fatty acids. International Journal of Biological Macromolecules, 150, 644–653.

Chávez, C. E., Veyna-Torres, J. I., Cavazos-Tamez, L. M., de la Rosa-Millán, J., & Serna-Saldívar, S. O. (2018). Physicochemical characteristics, ATR-FTIR molecular interactions and in vitro starch and protein digestion of thermally-treated whole pulse flours. Food Research International, 105, 371–383.

Choi, H. M., & Yoo, B. (2009). Steady and dynamic shear rheology of sweet potato starch-xanthan gum mixtures. Food Chemistry, 116(3), 638–643.

Chung, C., Degner, B., & McClements, D. J. (2013). Creating novel food textures: Modifying rheology of starch granule suspensions by cold-set whey protein gelation. LWT - Food Science and Technology, 54(2), 336–345.

Contreras, I., Rolée, A., & Le Meste, M. (2004). Study of starch granules swelling by the blue dextran method and by microscopy. Starch/Staerke, 56.

Desam, G., Li, J., Chen, G., Campanella, O., & Narsimhan, G. (2018). A mechanistic model for swelling kinetics of waxy maize starch suspension. Journal of Food

Desam, G. P., Dehghani, N. L., Narsimhan, G., & Narsimhan, V. (2021). Characterization of storage modulus of starch suspensions during the initial stages of pasting using Stokesian dynamics simulations. Food Hydrocolloids, 121.

Desam, P., Jones, G., & Narsimhan, G. (2021). Prediction of the effect of sucrose on equilibrium swelling of starch suspensions. Journal of Food Engineering,

Desam, P., Li, J., Chen, G., Campanella, O., & Narsimhan, G. (2020). Swelling kinetics of rice and potato starch suspensions. Journal of Food Process Engineering, 43(4), 1–13.

Evans, I. D., & Haisman, D. R. (1980). Rheology of Gelatinised Starch Suspensions. Journal of Texture Studies, 10(4), 347–370.

Gelvez, V. M., Luna, J., & Campo, Y. (2016). Effect of ultrasound in the thermal properties of wheat starch. Vitae, 23.

Ghafoor, M., Misra, N. N., Mahadevan, K., & Tiwari, B. K. (2014). Ultrasound assisted hydration of navy beans (Phaseolus vulgaris). Ultrasonics Sonochemistry, 21(1), 409–414.

Golkar, A., Milani, J. M., Motamedzadegan, A., & Kenari, R. E. (2021). Physicochemical, structural, and rheological characteristics of corn starch after thermal-ultrasound processing. Food Science and Technology International.

Guimarães, B., Polachini, T. C., Augusto, P. E. D., & Telis-Romero, J. (2020). Ultrasound-assisted hydration of wheat grains at different temperatures and power applied: Effect on acoustic field, water absorption and germination. Chemical Engineering and Processing - Process Intensification, 155(July).

Hakke, V. S., Landge, V. K., Sonawane, S. H., Uday Bhaskar Babu, G., Ashokkumar, M., & M. M. Flores, E. (2022). The physical, mechanical, thermal and barrier properties of starch nanoparticle (SNP)/polyurethane (PU) nanocomposite films synthesised by an ultrasound-assisted process. Ultrasonics Sonochemistry, 88.

Han, I. H., & Baik, B. K. (2006). Oligosaccharide content and composition of legumes and their reduction by soaking, cooking, ultrasound, and high hydrostatic pressure. Cereal Chemistry, 83(4), 428–433.

Kalita, D., Jain, S., Srivastava, B., & Goud, V. V. (2021). Sono-hydro priming process (ultrasound modulated hydration): Modelling hydration kinetic during paddy germination. Ultrasonics Sonochemistry, 70(September 2020), 105321.

Kaur, H., & Gill, B. S. (2019). Effect of high-intensity ultrasound treatment on nutritional, rheological and structural properties of starches obtained from different cereals. International Journal of Biological Macromolecules, 126, 367–375.

Khatkar, A. B., Kaur, A., & Khatkar, S. K. (2020). Restructuring of soy protein employing ultrasound: Effect on hydration, gelation, thermal, in-vitro protein digestibility and structural attributes. Lwt, 132, 109781.

Khurshida, S., Das, M. J., Deka, S. C., & Sit, N. (2021). Effect of dual modification sequence on physicochemical, pasting, rheological and digestibility properties of cassava starch modified by acetic acid and ultrasound. International Journal of Biological Macromolecules, 188(August), 649–656.

Kilicli, M., & Toker, O. S. (2022). Some physicochemical and technological properties of cooking water of pulses as a canned industry waste: Effect of ultrasound treatment during soaking. International Journal of Food Engineering, 18, 105–118.

Kizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. Journal of Agricultural and Food Chemistry, 50(14), 3912–3918.

Kou, T., & Gao, Q. (2019). A study on the thermal stability of amylose-amylopectin and amylopectin-amylopectin in cross-linked starches through iodine binding capacity. Food Hydrocolloids, 88, 86–91.

Lagarrigue, S., Alvarez, G., Cuvelier, G., & Flick, D. (2008). Swelling kinetics of waxy maize and maize starches at high temperatures and heating rates. Carbohydrate Polymers, 73(1), 148–155.

Liu, H., Chaudhary, D., Yusa, S. I., & Tadé, M. O. (2011). Glycerol/starch/Na+-montmorillonite nanocomposites: A XRD, FTIR, DSC and 1H NMR study. Carbohydrate Polymers, 83(4), 1591–1597.

Lozano, G., Alvarez Ramirez, J., Lobato Calleros, C., Vernon Carter, E. J., & Hernández Marín, N. Y. (2021). Characterization of Corn Starch-Calcium Alginate Xerogels by Microscopy, Thermal, XRD, and FTIR Analyses. Starch/Staerke, 73.

Mapengo, C. R., Ray, S. S., & M, N. E. (2022). Granular morphology, molecular structure and thermal stability of infrared heat-moisture treated maize starch with added lipids. Food Chemistry, 382.

Meurer, M. C., de Souza, D., & Ferreira Marczak, L. D. (2020). Effects of ultrasound on technological properties of chickpea cooking water (aquafaba). Journal of Food Engineering, 265, 109688.

Miano, A., & Augusto, P. (2018). The ultrasound assisted hydration as an opportunity to incorporate nutrients into grains. Food Research International, 106(2017), 928–935.

Miano, A. C., Sabadoti, V. D., & Augusto, P. E. D. (2018). Enhancing the hydration process of common beans by ultrasound and high temperatures: Impact on cooking and thermodynamic properties. Journal of Food Engineering, 225, 53–61.

Miano, A., Ibarz, A., & Augusto, P. (2017). Ultrasound technology enhances the hydration of corn kernels without affecting their starch properties. Journal of Food Engineering, 197, 34–43.

Miano, A., Pereira, J., Castanha, N., Júnior, M., & Augusto, P. (2016). Enhancing mung bean hydration using the ultrasound technology: Description of mechanisms and impact on its germination and main components. Scientific Reports, 6(November), 1–14.

Miano, A., Sabadoti, V. D., & Augusto, P. E. D. (2019). Combining Ionizing Irradiation and Ultrasound Technologies: Effect on Beans Hydration and Germination. Journal of Food Science, 84(11), 3179–3185.

Mohammad, A., Asad, R., & Seyed, M. A. (2015). Ultrasound-assisted acid-thinning of corn starch: Morphological, physicochemical, and rheological properties. Almidón/Staerke, 67.

Nayouf, M., Loisel, C., & Doublier, J. L. (2003). Effect of thermomechanical treatment on the rheological properties of crosslinked waxy corn starch. Journal of Food Engineering, 59(2–3), 209–219.

Oh, H. E., Pinder, D. N., Hemar, Y., Anema, S. G., & Wong, M. (2008). Effect of high-pressure treatment on various starch-in-water suspensions. Food Hydrocolloids, 22(1), 150–155.

Park, H., Xu, S., & Seetharaman, K. (2011). A novel in situ atomic force microscopy imaging technique to probe surface morphological features of starch granules. Carbohydrate Research, 346(6), 847–853.

Patero, T., & Augusto, P. E. D. (2015). Ultrasound (US) enhances the hydration of sorghum (Sorghum bicolor) grains. Ultrasonics Sonochemistry, 23, 11–15.

Pourfarzad, A., Ahmadian, Z., & Habibi-Najafi, M. B. (2018). Interactions between polyols and wheat biopolymers in a bread model system fortified with inulin: A Fourier transform infrared study. Heliyon, 4(12).

Pourfarzad, A., Habibi Najafi, M. B., Haddad Khodaparast, M. H., & Khayyat, M. H. (2015). Serish inulin and wheat biopolymers interactions in model systems as a basis for understanding the impact of inulin on bread properties: a FTIR investigation. Journal of Food Science and Technology, 52(12), 7964–7973.

Pourfarzad, A., Yousefi, A., & Ako, K. (2021). Steady/dynamic rheological characterization and FTIR study on wheat starch-sage seed gum blends. Food Hydrocolloids, 111(September), 106380.

Rahman, M. M., & Lamsal, B. P. (2021). Ultrasound-assisted extraction and modification of plant-based proteins: Impact on physicochemical, functional, and nutritional properties. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1457–1480.

Sánchez, T., Dufour, D., Moreno, I. X., & Ceballos, H. (2010). Comparison of pasting and gel stabilities of waxy and normal starches from potato, maize, and rice with those of a novel waxy cassava starch under thermal, chemical, and mechanical stress. Journal of Agricultural and Food Chemistry, 58(8), 5093–5099.

Schröder, J., Kraus, S., Rocha, B. B., Gaukel, V., & Schuchmann, H. P. (2011). Characterization of gelatinized corn starch suspensions and resulting drop size distributions after effervescent atomization. Journal of Food Engineering, 105(4), 656–662.

Shafaei, S. M., Nourmohamadi-Moghadami, A., Rahmanian-Koushkaki, H., & Kamgar, S. (2019). Neural computing efforts for integrated simulation of ultrasound-assisted hydration kinetics of wheat. Information Processing in Agriculture, 6(3), 357–374.

Singla, M., & Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73.

Stickel, J. J., & Powell, R. L. (2005). Fluid mechanics and rheology of dense suspensions. Annual Review of Fluid Mechanics, 37, 129–149.

Suriyatem, R., Auras, R. A., & Rachtanapun, P. (2018). Improvement of mechanical properties and thermal stability of biodegradable rice starch–based films blended with carboxymethyl chitosan. Industrial Crops and Products, 122(April), 37–48.

Tsutsui, K., Katsuta, K., Matoba, T., Takemasa, M., Funami, T., Sato, E., & Nishinari, K. (2013). Effects of Time and Temperature of Annealing on Rheological and Thermal Properties of Rice Starch Suspensions during Gelatinization. Journal of Texture Studies, 44(1), 21–33.

Ulloa, J. A., Enríquez López, K. V., Contreras Morales, Y. B., Rosas Ulloa, P., Ramírez Ramírez, J. C., & Ulloa Rangel, B. E. (2015). Effect of ultrasound treatment on the hydration kinetics and cooking times of dry beans (Phaseolus vulgaris). CYTA - Journal of Food, 13(4), 588–596.

Vallons, K. J. R., & Arendt, E. K. (2010). Understanding high pressure-induced changes in wheat flour-water suspensions using starch-gluten mixtures as model systems. Food Research International, 43(3), 893–901.

Vásquez, U., Siche, R., & Miano, A. C. (2021). Ultrasound-assisted hydration with sodium bicarbonate solution enhances hydration-cooking of pigeon pea. Lwt, 144(February).

Wang, L., Wang, M., Zhou, Y., Wu, Y., & Ouyang, J. (2022). Influence of ultrasound and microwave treatments on the structural and thermal properties of normal maize starch and potato starch: A comparative study. Food Chemistry, 377.

Xiong, J., Li, Q., Shi, Z., & Ye, J. (2017). Interactions between wheat starch and cellulose derivatives in short-term retrogradation: Rheology and FTIR study. Food Research International, 100, 858–863.

Yadav, S., Mishra, S., & Pradhan, R. C. (2021). Ultrasonics Sonochemistry Ultrasound-assisted hydration of finger millet ( Eleusine Coracana ) and its effects on starch isolates and antinutrients. Ultrasonics Sonochemistry, 73, 105542.

Yang, Q., Xiao, Z., Zhao, Y., Liu, C., Xu, Y., & Bai, J. (2015). Effect of extrusion treatment with different emulsifiers on the thermal stability and structure of corn starch. Czech Journal of Food Sciences, 33(5), 464–473.

Yıldırım, A. (2022). Influence of temperature, ultrasound, and variety on moisture diffusivity and thermodynamic properties of some durum wheat varieties during hydration. Revista de Procesamiento y Conservación de Alimentos.

Zhang, J., Zhang, Y., Zou, Y., & Zhang, W. (2021). Effects of ultrasound-assisted cooking on quality characteristics of spiced beef during cold storage. Lwt, 136(P2), 110359.

Zhang, Y. F., Li, J. Bin, Zhang, Z. Y., Wei, Q. S., & Fang, K. (2019). Rheological law of change and conformation of potato starch paste in an ultrasound field. Journal of Food Measurement and Characterization, 13(3), 1695–1704.

Zou, Y., Zhang, W., Kang, D., & Zhou, G. (2018). Improvement of tenderness and water holding capacity of spiced beef by the application of ultrasound during cooking. International Journal of Food Science and Technology, 53(3), 828–836.

Published

2022-12-19

How to Cite

Ponce-Quispe, G. ., & Siche, R. . (2022). Ultrasound-assisted grain hydration and its effect on starches: A review. Agroindustrial Science, 12(3), 365-374. https://doi.org/10.17268/agroind.sci.2022.03.16

Issue

Section

Artículo de Revisión

Most read articles by the same author(s)

> >>