Bayesian estimation of parameters in a SI mathematical model for the transmission dynamics of an infectious disease in Peru
DOI:
https://doi.org/10.17268/sel.mat.2023.01.04Keywords:
ordinary differential equation, multiple level, stability, SI Model, Montecarlo simulation, Bayesian estimation, MCMCAbstract
The objective of the research is to estimate the transmission rate of an infection (β) in the SI epidemical model, using Bayesian statistical methods from observed data in Peru. After studying the SI mathematical model and Bayesian statistical inference metho’ds, a Bayesian estimator is proposed to estimate the transmisión rate of an infection in this model and a procedure is proposed to estimate this rate using Montecarlo simulation based on Markov chains - MCMC.
References
Montesinos-López OA, Hernández-Suárez CM. Modelos matemáticos para enfermedades infecciosas. Salud pública de México. 2007 Jul;49(3):218-26.
Mesa-Mazo MJ, Vergaño-Salazar JG, Sánchez-Botero CE, Muñoz-Loaiza A. Modelo matemático para la dinámica de transmisión del VIH/SIDA en una población sexualmente activa. Revista de Salud Pública. 2010 Apr;12(2):308-16.
López R, Vidal M, Valdez W. Nociones básicas de modelamiento matemático aplicado a la epidemiología. MInisterio de Salud-Perú. 2015.
Chowell G, Diaz-Duenas P, Miller JC, Alcazar-Velazco A, Hyman JM, Fenimore PW, Castillo-Chavez C. Estimation of the reproduction number of dengue fever from spatial epidemic data. Mathematical biosciences. 2007 Aug 1;208(2):571-89.
Mubayi A, Castillo-Chavez C, Chowell G, Kribs-Zavaleta C, Siddiqui NA, Kumar N, Das P. Transmission dynamics and underreporting of Kala-azar in the Indian state of Bihar. Journal of theoretical biology. 2010 Jan 7;262(1):177-85.
Duncan S, Gyongy M. Using the EM algorithm to estimate the disease parameters for smallpox in 17th century London. In2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control 2006 Oct 4 (pp. 3312-3317). IEEE.
Lavielle M, Samson A, Karina Fermin A, Mentré F. Maximum likelihood estimation of long-term HIV dynamic models and antiviral response. Biometrics. 2011 Mar;67(1):250-9.
Gelman A, Rubin DB. Markov chain Monte Carlo methods in biostatistics. Statistical methods in medical research. 1996 Dec;5(4):339-55.
Pandey A. Modeling dengue transmission and vaccination (Doctoral dissertation, Clemson University).
Jiménez Luna J. Métodos Monte Carlo basados en cadenas de Markov.
Amiri Mehra AH, Shafieirad M, Abbasi Z, Zamani I. Parameter estimation and prediction of COVID-19 epidemic turning point and ending time of a case study on SIR/SQAIR epidemic models. Computational and Mathematical Methods in Medicine. 2020 Dec 29;2020.
Talawar AS, Aundhakar UR. Parameter estimation of SIR epidemic model using MCMC methods. Glob J Pure Appl Math. 2016;12:1299-306.
MINSA-CDC. Situación epidemiológica del VIH-Sida en el Perú (SE43). Ministerio de Salud de la República del Perú, Viceministerio de Salud Pública - Centro Nacional de Epidemiología, Prevención y Control de enfermedades. Lima, Perú. 2021.[cited 2023 Jan 14]. Available from: http://www.dge.gob.pe/portal/docs/tools/teleconferencia/2021/SE432021/03.pdf
Salvatier J,Wiecki TV, Fonnesbeck C. Probabilistic programming in Python using PyMC3. PeerJ Computer Science. 2016 Apr 6;2:e55.
Kumar R, Carroll C, Hartikainen A, Martín OA. ArviZ a unified library for exploratory analysis of Bayesian models in Python. Journal of Open Source Software. 2019; 4(33):1143. Available from: https://doi.org/10.21105/joss.01143
López Roxana, Yang Kuang, Abdessamad Tridane. A Simple SI Model with Two Age Groups and Its Application to US HIV Epidemics: To Treat or Not to Treat?. Journal of Biological Systems. 2007; 15(02): 169-184.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Selecciones Matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
1. The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution License,Atribución 4.0 Internacional (CC BY 4.0) which allows third parties to use what is published whenever they mention the authorship of the work And to the first publication in this magazine.
2. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly state that The paper was first published in this journal.
3. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and to a greater and more rapid dissemination Of the published work.