Bayesian estimation of parameters in a SI mathematical model for the transmission dynamics of an infectious disease in Peru

Autores

  • Emma Cambillo-Moyano Departamento de Estadística, Universidad Nacional Mayor de San Marcos, Lima, Perú
  • Ysela Agüero-Palacios Departamento de Estadística, Universidad Nacional Mayor de San Marcos, Lima, Perú.
  • Alicia Riojas-Cañari Departamento de Investigación de Operaciones, Universidad Nacional Mayor de San Marcos, Lima, Perú.
  • Pedro Pesantes-Grados Unidad de Posgrado de la Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Lima, Perú.
  • Roxana López-Cruz Departamento de Matemática, Universidad Nacional Mayor de San Marcos, Lima, Perú. http://orcid.org/0000-0002-7703-5784

DOI:

https://doi.org/10.17268/sel.mat.2023.01.04

Palavras-chave:

ordinary differential equation, multiple level, stability, SI Model, Montecarlo simulation, Bayesian estimation, MCMC

Resumo

The objective of the research is to estimate the transmission rate of an infection (β) in the SI epidemical model, using Bayesian statistical methods from observed data in Peru. After studying the SI mathematical model and Bayesian statistical inference metho’ds, a Bayesian estimator is proposed to estimate the transmisión rate of an infection in this model and a procedure is proposed to estimate this rate using Montecarlo simulation based on Markov chains - MCMC.

Biografia do Autor

Roxana López-Cruz, Departamento de Matemática, Universidad Nacional Mayor de San Marcos, Lima, Perú.

Mathematics, Ph.D. (Arizona State University-USA)

Full Professor, Mathematics Department

Universidad Nacional Mayor de San Marcos, Lima, Perú

Referências

Montesinos-López OA, Hernández-Suárez CM. Modelos matemáticos para enfermedades infecciosas. Salud pública de México. 2007 Jul;49(3):218-26.

Mesa-Mazo MJ, Vergaño-Salazar JG, Sánchez-Botero CE, Muñoz-Loaiza A. Modelo matemático para la dinámica de transmisión del VIH/SIDA en una población sexualmente activa. Revista de Salud Pública. 2010 Apr;12(2):308-16.

López R, Vidal M, Valdez W. Nociones básicas de modelamiento matemático aplicado a la epidemiología. MInisterio de Salud-Perú. 2015.

Chowell G, Diaz-Duenas P, Miller JC, Alcazar-Velazco A, Hyman JM, Fenimore PW, Castillo-Chavez C. Estimation of the reproduction number of dengue fever from spatial epidemic data. Mathematical biosciences. 2007 Aug 1;208(2):571-89.

Mubayi A, Castillo-Chavez C, Chowell G, Kribs-Zavaleta C, Siddiqui NA, Kumar N, Das P. Transmission dynamics and underreporting of Kala-azar in the Indian state of Bihar. Journal of theoretical biology. 2010 Jan 7;262(1):177-85.

Duncan S, Gyongy M. Using the EM algorithm to estimate the disease parameters for smallpox in 17th century London. In2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control 2006 Oct 4 (pp. 3312-3317). IEEE.

Lavielle M, Samson A, Karina Fermin A, Mentré F. Maximum likelihood estimation of long-term HIV dynamic models and antiviral response. Biometrics. 2011 Mar;67(1):250-9.

Gelman A, Rubin DB. Markov chain Monte Carlo methods in biostatistics. Statistical methods in medical research. 1996 Dec;5(4):339-55.

Pandey A. Modeling dengue transmission and vaccination (Doctoral dissertation, Clemson University).

Jiménez Luna J. Métodos Monte Carlo basados en cadenas de Markov.

Amiri Mehra AH, Shafieirad M, Abbasi Z, Zamani I. Parameter estimation and prediction of COVID-19 epidemic turning point and ending time of a case study on SIR/SQAIR epidemic models. Computational and Mathematical Methods in Medicine. 2020 Dec 29;2020.

Talawar AS, Aundhakar UR. Parameter estimation of SIR epidemic model using MCMC methods. Glob J Pure Appl Math. 2016;12:1299-306.

MINSA-CDC. Situación epidemiológica del VIH-Sida en el Perú (SE43). Ministerio de Salud de la República del Perú, Viceministerio de Salud Pública - Centro Nacional de Epidemiología, Prevención y Control de enfermedades. Lima, Perú. 2021.[cited 2023 Jan 14]. Available from: http://www.dge.gob.pe/portal/docs/tools/teleconferencia/2021/SE432021/03.pdf

Salvatier J,Wiecki TV, Fonnesbeck C. Probabilistic programming in Python using PyMC3. PeerJ Computer Science. 2016 Apr 6;2:e55.

Kumar R, Carroll C, Hartikainen A, Martín OA. ArviZ a unified library for exploratory analysis of Bayesian models in Python. Journal of Open Source Software. 2019; 4(33):1143. Available from: https://doi.org/10.21105/joss.01143

López Roxana, Yang Kuang, Abdessamad Tridane. A Simple SI Model with Two Age Groups and Its Application to US HIV Epidemics: To Treat or Not to Treat?. Journal of Biological Systems. 2007; 15(02): 169-184.

Downloads

Publicado

2023-06-14

Como Citar

Cambillo-Moyano, E., Agüero-Palacios, Y., Riojas-Cañari, A., Pesantes-Grados, P., & López-Cruz, R. (2023). Bayesian estimation of parameters in a SI mathematical model for the transmission dynamics of an infectious disease in Peru. Selecciones Matemáticas, 10(01), 41 - 50. https://doi.org/10.17268/sel.mat.2023.01.04

Edição

Seção

Articles