Stability of a Leslie-Gower type predator-prey model with a strong Allee effect with delay

Authors

  • Roxana López-Cruz Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Av. Carlos Germán Amezaga 375, Cercado de Lima, Perú. http://orcid.org/0000-0002-7703-5784

DOI:

https://doi.org/10.17268/sel.mat.2022.01.02

Keywords:

Allee effect, Leslie-Gower predator-prey model, delay parameter, stability, Hopf bifurcation

Abstract

In this paper, a modified Leslie-Gower type predator-prey model introducing in prey population growth a delayed strong Allee effect is studied.

Estabilidad de un modelo depredador-presa tipo Leslie Gower con un efecto Allee fuerte con retardo

The Leslie-Gower model with Allee effect has none, one or two positive equilibrium points but the incorporation of a time delay in the growth rate destabilizes the system, breaking the stability when the delay cross a critical point. The existence of a Hopf bifurcation is studied in detail and the numerical simulations confirm the theoretical results showing the different scenarios.
We present biological interpretations for species prey-predator type.

Author Biography

Roxana López-Cruz, Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Av. Carlos Germán Amezaga 375, Cercado de Lima, Perú.

Mathematics, Ph.D. (Arizona State University-USA)
Master en Matemáticas, (UNMSM)
Estudios de Posgrado (IMPA - BRASIL)
Licenciado en Matemáticas (UNMSM)
Bachiller en Matemáticas (UNMSM)
Profesor Principal e Investigador - Facultad de Ciencias Matemáticas - UNMSM
Presidenta(e) Sociedad Peruana de Matemática Aplicada y Computacional
Miembro Asociado (Pro Secretaria) Academia Nacional de Ciencia y Tecnología
Miembro Numerado del Colegio de Matemáticos del Perú
Decana Nacional del Colegio de Matemáticos del Perú (2012-2014)
ViceDecana del Colegio de Matemáticos del Perú (2014-2016)
Académico Titular de la Academia Nacional de Ciencia y Tecnología
Presidenta de la Sociedad Latinoamericana de Biología Matemática (SOLABIMA) (2015 - 2017)

References

Aziz-Alaoui MA, Daher Okiye M. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Applied Mathematics Letters 2003; 16:1069-1075.

Bazykin AD. Nonlinear Dynamics of interacting populations, World Scientific 1998.

Berec L, Angulo E, Courchamp F. Multiple Allee effects and population management, Trends in Ecology and Evolution. 2007; 22:185-191.

Celik C. Hopf bifurcation of a ratio-dependent predator-prey system with time delay, Chaos, Solitons and Fractals. 2009; 42:1474-1484.

Clark CW. Mathematical Bioeconomics: The Mathematics of Management. (2nd ed), John Wiley and Sons Inc. 1990.

Courchamp F, Clutton-Brock T, Grenfell B. Inverse dependence and the Allee effect, Trends in Ecology and Evolution. 1999; 14:405-410.

Courchamp F, Berec L, Gascoigne J. Allee effects in Ecology and Conservation, Oxford University Press 2008.

Das K, Chakraborty M, Chakraborty K, Kar TK. Modelling and analysis of a multiple delayed exploited ecosystem towards coexistence perspective, Nonlinear Dynamics 2014; 78(1):505-523. DOI 10.1007/s11071-014-1457-3.

Freedman HI.Deterministic Mathematical Model in Population Ecology. Marcel Dekker; 1980.

Freedman HI, Rao VSH. The tradeoff between mutual interference and time lag in predator prey models., Bull. Math. Biol. 1983; 45:991-1004.

González-Olivares E, Mena-Lorca J, Rojas-Palma A, Flores JD. Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey, Applied Mathematical Modelling. 2011; 35:366-381.

González-Olivares E, Mena-Lorca J, Rojas-Palma A, Flores JD. Erratum to “Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey”. [Appl. Math. Modell. (2011) 366-381], Applied Mathematical Modelling. 2012; 36:860-862.

Ho C-P, Lin C-H, Huang H-N. On the Lyapunov functional of the Leslie-Gower predator-prey models with time-delay and Hollings’s functional response, Electronic Journal of Qualitative Theory of Differential Equations. 2012; 35:1-27.

Li Y, Li C. Stability and Hopf bifurcation analysis on a delayed Leslie-Gower predator-prey system incorporating a prey refuge, Appl. Math. and Comp. 2013; 219:4576-4589.

Liermann M, Hilborn R. Depensation: evidence, models and implications, Fish and Fisheries. 2001; 2:33-58.

Hale JK, Lunel SMV. Introduction to functional differential equations (Vol. 99). Springer Science and Business Media. 2013.

Kot M. Elements of Mathematical Ecology, Cambridge University Press 2001.

Kuang Y. Delay differential equations with applications in Populations Dynamics, Academic Press, Inc. 1993.

Kuang Y, Beretta E. Global qualitative analysis of a ratio-dependent predator-prey system, J. Mat. Biol. 1998; 36:389-406.

Kumar P, Raj S. Modelling and analysis of prey-predator model involving predation of mature prey using delay differential equations. Numerical Algebra, Control and Optimization. 2021.

Liu J. Bifurcation analysis in a stage-structured predator-prey model with maturation delay, Int.J. Mat. Biol. 2014, Vol 7(4):(1-17)

May RM. Stability and complexity in model ecosystems (2nd edition), Princeton University Press 2001.

Nindjin AF, Aziz-Alaoui MA, Cadivel M. Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay, Nonlinear Analysis: RealWorld Applications. 2006; 7:1104-1118.

Pal PJ, Saha T, Sen M, Banerjee M. A delayed predator-prey model with strong Allee effect in prey population growth, Nonlinear Dynamics 2011; 68(1):23-42.

Smith H. An Introduction to Delay Differential Equations with applications to the Life Sciences, Springer 2011.

Stephens PA, Sutherland WJ. Consequences of the Allee effect for behaviour, ecology and conservation. Trends in Ecology and Evolution. 1999; 14:401-405.

Stephens PA, Sutherland WJ, Freckleton RP. What is the Allee effect?, Oikos. 1999; 87:185-190.

Turchin P. Complex population dynamics. A theoretical/empirical synthesis, Monographs in Population Biology 35 Princeton University Press, 2003.

Xua R, Gan Q, Ma Z. Stability and bifurcation analysis on a ratio-dependent predator-prey model with time delay, J. Comput. Appl. Math. 2009; 230:187-203.

Yue Y, Lui H, Wei Y, Ma M, Zhang K. Dynamic study of a Predator Prey Model with Weak Allee Effect and Delay, A. Math. Physics. 2019; 2019:1-15.

Downloads

Published

2022-07-27

How to Cite

López-Cruz, R. (2022). Stability of a Leslie-Gower type predator-prey model with a strong Allee effect with delay. Selecciones Matemáticas, 9(01), 24 - 33. https://doi.org/10.17268/sel.mat.2022.01.02

Most read articles by the same author(s)