Perturbation of a biological control model of malaria considering species competition

Authors

  • Marco Antonio Tamariz Milla Universidad Nacional del Santa, Chimbote, Perú.
  • Roxana López-Cruz Universidad Nacional Mayor de San Marcos, Lima, Perú.

DOI:

https://doi.org/10.17268/sel.mat.2025.02.04

Keywords:

Dynamical systems, stability, intraspecific competition, mathematical epidemiology

Abstract

This work studies a mathematical model describing the transmission dynamics of malaria, incorporating intraspecific competition in human and mosquito populations, and biological control through larvivorous fish. We prove the existence of a compact attracting set for the proposed system of differential equations. Through stability analysis, we characterize the disease-free and endemic equilibrium points, determining epidemiologically relevant thresholds. The basic reproduction number (R0) is a key parameter: when R0 ≤ 1, the disease-free equilibrium is globally asymptotically stable, whereas for R0 > 1, a stable endemic equilibrium emerges. Numerical simulations validate the theoretical results and reveal the regulatory effect of intraspecific competition on disease prevalence. Finally, we generalize previous models by incorporating competitive interactions and vector management strategies.

References

Centers for Disease Control and Prevention. About Malaria [Internet]. 2021 [cited 2024 Sep 01]. Available from: https://www.cdc.gov/malaria/about/index.html

World Health Organization. World malaria report 2018 [Internet]. 2018 [cited 2024 Sep 01]. Available from: https://apps.who.int/iris/bitstream/handle/10665/275867/9789241565653-eng.pdf

Basánez M, Rodríguez D. Dinámica de transmisión y modelos matemáticos en enfermedades transmitidas por vectores. Entomotropica: Revista internacional para el estudio de la entomología tropical. 2004;19(3):1–22. Available from: http://hdl.handle.net/1807/5787

Lou Y, Zhao X. Modelling malaria control by introduction of larvivorous fish. Bulletin of Mathematical Biology.2011;73(10):2384–2407. doi:http://dx.doi.org/10.1007/s11538-011-9628-6

Ghosh M, Lashari A, Li X. Biological control of malaria: a mathematical model. Applied Mathematics and Computation. 2013;219:7923–7939. doi:http://dx.doi.org/10.1016/j.amc.2013.02.053

Perko L. Differential equations and dynamical systems (Vol. 7). Springer Science & Business Media; 2013.

Zhao X, Jing Z. Global asymptotic behavior in some cooperative systems of functional differential equations.

Canadian Applied Mathematics Quarterly. 1996;4(4):421–444. Disponible en: https://www.math.mun.ca/zhao/Selectpapers/ZhaoJingCAMQ96.pdf

Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences. 2002;180(1–2):29–48. doi:http://dx.doi.org/10.1016/S0025-5564(02)00108-6

Kiseliov A, Krasnov M, Makarenko G, Bernardo E. Problemas de ecuaciones diferenciales ordinarias. Mir;1968.

Tamariz M. Perturbación de un modelo de control biológico de la malaria considerando competencia de especies [Doctoral Dissertation]. Chimbote, Perú: Universidad Nacional del Santa; 2025. 168 p. [cited 2025 Sep 20]. Available from: https://repositorio.uns.edu.pe/handle/20.500.14278/5157

Barreira L, Valls C. Ordinary differential equations: Qualitative theory. American Mathematical Soc; 2012.

Zhao X. Dynamical systems in population biology. Springer, New York; 2003.

Hirsch M, Smith H, Zhao X. Chain transitivity, attractivity, and strong repellors for semidynamical systems. Journal of Dynamics and Differential Equations. 2001; 13:107–131. doi:http://dx.doi.org/10.1023/A:1009044515567

Downloads

Published

2025-12-27

How to Cite

Tamariz Milla, M. A., & López-Cruz, R. (2025). Perturbation of a biological control model of malaria considering species competition. Selecciones Matemáticas, 12(02), 309 - 325. https://doi.org/10.17268/sel.mat.2025.02.04

Most read articles by the same author(s)