Indicator values for food shelf life prediction: A review

Authors

  • Teofilo Espinoza-Tellez Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Región de los Lagos, Osorno, Chile. https://orcid.org/0000-0003-1491-1051
  • Roberto Quevedo-León Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Región de los Lagos, Osorno, Chile. https://orcid.org/0000-0001-8132-838X
  • Oscar Diaz-Carrasco Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Región de los Lagos, Osorno, Chile. https://orcid.org/0000-0002-0937-9825

DOI:

https://doi.org/10.17268/sci.agropecu.2024.032

Keywords:

Food, indicators of spoilage, shelf life, maximum values, minimum values

Abstract

The short time that people have to cook their own food has led industries to satisfy the need for ready-to-eat products. This has motivated a progressive increase in studies that can determine the time at which the product can be safely consumed (shelf life). There are several methods for determining the shelf life of products; but regardless of the method used, the key is to know the minimum and/or maximum values of the indicators that define their deterioration. These values of spoilage indicators can change according to the compositional conditions of the food or the conditions under which it is stored during its shelf life. This review provides values for indicators used in tests for the determination of food shelf life, according to their nature, and environmental conditions, as way to be used by researchers as a reference in their predictions. The results of this research show scientific evidence through published articles about indicator values, their changes, referring to food shelf life kinetics. These values can be used for the prediction of food shelf life, for comparison purposes with their respective studies. It will be of importance for consumers, who will be able to use these values as a reference in the storage of these products. Shelf life indicator values for foods not considered in this work should be evaluated or experimented with in future work.

References

Ahari, H., & Naeimabadi, M. (2021). Employing Nanoemulsions in Food Packaging: Shelf Life Enhancement. Food Engineering Reviews, 13(4), 858-883. https://doi.org/10.1007/s12393-021-09282-z

Alcicek, Z. (2014). Effects of different liquid smoke flavor levels on the shelf life of venus clam (Chamelea gallina, l 1758) meat. Journal of Food Processing and Preservation, 38(3), 964-970. https://doi.org/10.1111/jfpp.12052

Alipour, A., Marhamatizadeh, M. H., & Mohammadi, M. (2023). Studying the shelf life of butter containing fucoidan, by evaluating sensory and chemical properties. Food Science & Nutrition. https://doi.org/10.1002/fsn3.3277

Alirezalu, K., Inacio, R. S., Hesari, J., Remize, F., Nemati, Z., Saraiva, J. A., . . . Lorenzo, J. M. (2019). Nutritional, chemical, syneresis, sensory properties, and shelf life of Iranian traditional yoghurts during storage. LWT - Food Science and Technology, 114. https://doi.org/10.1016/j.lwt.2019.108417

Alqahtani, N. K., Alnemr, T. M., Alqattan, A. M., Aleid, S. M., & Habib, H. M. (2023). Physicochemical and Sensory Properties and Shelf Life of Block-Type Processed Cheeses Fortified with Date Seeds (Phoenix dactylifera L.) as a Functional Food. Foods, 12(3). https://doi.org/10.3390/foods12030679

Aminian-Dehkordi, A., Ghaderi-Ghahfarokhi, M., Saei-Dehkordi, S., & Fazlara, A. (2023). Layer-by-Layer Coating Approach Based on Sodium Alginate, Sage Seed Gum, and Savory Oil: Shelf-Life Extension of Fresh Cheese. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-022-02990-2

An, H. J., Zhai, C., Zhang, F., Ma, Q. Y., Sun, J. F., Tang, Y. W., & Wang, W. X. (2023). Quantitative analysis of Chinese steamed bread staling using NIR, MIR, and Raman spectral data fusion. Food Chemistry, 405. https://doi.org/10.1016/j.foodchem.2022.134821

Anand, S., Pang, E., Livanos, G., & Mantri, N. (2018). Characterization of Physico-Chemical Properties and Antioxidant Capacities of Bioactive Honey Produced from Australian Grown “Agastache rugosa” and its Correlation with Colour and Poly-Phenol Content. Molecules, 23(1). https://doi.org/10.3390/molecules23010108

Andrade, M. A., Rodrigues, P. V., Barros, C., Cruz, V., Machado, A. V., Barbosa, C. H., . . . Silva, A. S. (2023). Extending High Fatty Foods Shelf-Life Protecting from Lipid Oxidation and Microbiological Contamination: An Approach Using Active Packaging with Pomegranate Extract. Coatings, 13(1). https://doi.org/10.3390/coatings13010093

Bassey, A. P., Chen, Y. F., Boateng, E. F., Zhang, Y. Y., Diao, X. Y., Nasiru, M. M., . . . Zhou, G. H. (2022). Evaluation of physicochemical, microbiological, and sensory profiles of vacuum-packed cooked low-salt pork belly under refrigeration and room-temperature storage. LWT-Food Science and Technology, 167. https://doi.org/10.1016/j.lwt.2022.113847

Bonciu, E., Rosculete, C. A., Olaru, A. L., & Rosculete, E. (2022). Changes in the quality of food during storage and the main determining factors. Scientific Papers-Series a-Agronomy, 65(2), 335-340.

Bottegal, D. N., Lobón, S., Latorre, M. A., Bertolin, J. R., & Alvarez-Rodríguez, J. (2023). Colour Stability, Fatty Acid Profile, and Lipid Oxidation in Meat Stored in Modified Atmosphere Packaging from Light Lambs Fed with Concentrate with Carob Pulp “Ceratonia siliqua L.”. Antioxidants, 12(8). https://doi.org/10.3390/antiox12081482

Bressan, F., & Toledo, G. L. (2020). The influence of expiration date on purchase and consumption decisions of food products. Estudios Gerenciales, 36(157), 439-453. https://doi.org/10.18046/j.estger.2020.157.3909

Burdon, J., Billing, D., & Pidakala, P. (2017). Avoiding Chilling Damage in 'Hass' Avocado Fruit by Controlled Atmosphere Storage at Higher Temperature. Hortscience, 52(8), 1107-1110. https://doi.org/10.21273/hortsci12070-17

Carrillo, I., & Abigail, M. (2014). Vida útil de los alimentos / Lifetime food. CIBA Revista Iberoamericana de las Ciencias Biológicas y Agropecuarias, 2(3).

Chang, Y. H., Chang, C. M., & Chuang, P. T. (2023). Shelf-Life Assessment of Bread Partially Substituted with Soy Protein Isolate. Applied Sciences-Basel, 13(6). https://doi.org/10.3390/app13063960

Chaturvedi, K., Basu, S., Singha, S., & Das, K. (2023). Predictive microbial growth modelling for an effective shelf-life extension strategy of Chhana (Indian cottage cheese). Food Control, 149. https://doi.org/10.1016/j.foodcont.2023.109697

Clodoveo, M., Muraglia, M., Fino, V., Curci, F., Fracchiolla, G., & Corbo, F. (2021). Overview on Innovative Packaging Methods Aimed to Increase the Shelf-Life of Cook-Chill Foods. Foods, 10(9). https://doi.org/10.3390/foods10092086

Cui, F. C., Zheng, S. W., Wang, D. F., Ren, L. K., Meng, Y. Q., Ma, R., . . . Li, J. R. (2024). Development of machine learning-based shelf-life prediction models for multiple marine fish species and construction of a real-time prediction platform. Food Chemistry, 450. https://doi.org/10.1016/j.foodchem.2024.139230

de Rezende, L. P., Barbosa, J., & Teixeira, P. (2022). Analysis of Alternative Shelf Life-Extending Protocols and Their Effect on the Preservation of Seafood Products. Foods, 11(8). https://doi.org/10.3390/foods11081100

Deepa, C., & Hebbar, H. U. (2017). Effect of micronization of maize grains on shelf-life of flour. Journal of Food Processing and Preservation, 41(5). https://doi.org/10.1111/jfpp.13195

Demarco, F., Romio, A. P., Alfaro, A. D., & Tonial, I. B. (2022). Effects of Natural Antioxidants on the Lipid Oxidation, Physicochemical and Sensory Characteristics, and Shelf Life of Sliced Salami. Food and Bioprocess Technology, 15(10), 2282-2293. https://doi.org/10.1007/s11947-022-02877-2

Ding, C., Khir, R., Pan, Z. L., Zhao, L. M., Tu, K., El-Mashad, H., & McHugh, T. H. (2015). Improvement in Shelf Life of Rough and Brown Rice Using Infrared Radiation Heating. Food and Bioprocess Technology, 8(5), 1149-1159. https://doi.org/10.1007/s11947-015-1480-5

Dulta, K., Koşarsoy Ağçeli, G., Thakur, A., Singh, S., Chauhan, P., & Chauhan, P. K. (2022). Development of Alginate-Chitosan Based Coating Enriched with ZnO Nanoparticles for Increasing the Shelf Life of Orange Fruits (Citrus sinensis L.). Journal of Polymers and the Environment. https://doi.org/10.1007/s10924-022-02411-7

Dusková, M., Dorotíková, K., Macharácková, B., Jezek, F., Kameník, J., & Sedo, O. (2024). The shelf life of cooked sausages with reduced salt content. Acta Veterinaria BRNO, 93(1), 115-121. https://doi.org/10.2754/avb202493010115

El-Sohaimy, S. A., Abd El-Wahab, M. G., Oleneva, Z. A., & Toshev, A. D. (2022). Physicochemical, Organoleptic Evaluation and Shelf Life Extension of Quinoa Flour-Coated Chicken Nuggets. Journal of Food Quality, 2022. https://doi.org/10.1155/2022/9312179

Fadiji, T., Rashvand, M., Daramola, M. O., & Iwarere, S. A. (2023). A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes, 11(2). https://doi.org/10.3390/pr11020590

Faradilla, R. H. F., Lee, G., Arns, J. Y., Roberts, J., Martens, P., Stenzel, M. H., & Arcot, J. (2017). Characteristics of a free-standing film from banana pseudostem nanocellulose generated from TEMPO-mediated oxidation. Carbohydrate Polymers, 174, 1156-1163. https://doi.org/10.1016/j.carbpol.2017.07.025

Farahanian, Z., Zamindar, N., Goksen, G., Tucker, N., Paidari, S., & Khosravi, E. (2023). Effects of Nano-Bentonite Polypropylene Nanocomposite Films and Modified Atmosphere Packaging on the Shelf Life of Fresh-Cut Iceberg Lettuce. Coatings, 13(2). https://doi.org/10.3390/coatings13020349

Fennema, O., & Tannenbaum, R. (2008). Química de los alimentos (Vol. 3). Acribia

Ferreira, S. M., Matos, L. C., & Santos, L. (2024). Harnessing the potential of chestnut shell extract to enhance fresh cheese: a sustainable approach for nutritional enrichment and shelf-life extension. Journal of Food Measurement and Characterization, 18(2), 1559-1573. https://doi.org/10.1007/s11694-023-02260-5

Fischer, I. H., Tozze, H. J., de Arruda, M. C., & Massola, N. S. (2011). Postharvest of 'Fuerte' and 'Hass' avocados: physical and chemical characteristics, damages and control of diseases. Semina-Ciencias Agrarias, 32(1), 209-220. https://doi.org/10.5433/1679-0359.2011v32n1p209

Forsido, S. F., Welelaw, E., Belachew, T., & Hensel, O. (2021). Effects of storage temperature and packaging material on physico-chemical, microbial and sensory properties and shelf life of extruded composite baby food flour. Heliyon, 7(4). https://doi.org/10.1016/j.heliyon.2021.e06821

Franklin, L. M., Chapman, D. M., King, E. S., Mau, M., Huang, G. W., & Mitchell, A. E. (2017). Chemical and Sensory Characterization of Oxidative Changes in Roasted Almonds Undergoing Accelerated Shelf Life. Journal of Agricultural and Food Chemistry, 65(12), 2549-2563. https://doi.org/10.1021/acs.jafc.6b05357

Freitas, M. A., & Costa, J. C. (2006). Shelf life determination using sensory evaluation scores: A general Weibull modeling approach. Computers & Industrial Engineering, 51(4), 652-670. https://doi.org/10.1016/j.cie.2006.04.005

Gao, Y. P., Jiang, H. L., Lv, D., Benjakul, S., & Zhang, B. (2021). Shelf-Life of Half-Shell Mussel (Mytilus edulis) as Affected by Pullulan, Acidic Electrolyzed Water, and Stable Chlorine Dioxide Combined Ice-Glazing during Frozen Storage. Foods, 10(8). https://doi.org/10.3390/foods10081896

Ghoshal, G., Bungar, S. P., Rachtanapun, P., & Phimolsiripol, Y. (2023). Advanced biomaterial-based active packaging for food shelf-life extension. International Journal of Food Science and Technology, 58(2), 851-853. https://doi.org/10.1111/ijfs.16191

González H, M. I., Mesa G, C. A., & Quinteros C, O. A. (2014). Estimación de la vida útil de almacenamiento de carne de res y de cerdo con diferente contenido graso. Vitae, 21, 201-210.

Gullian-Klanian, M., Jose Sanchez-Solis, M., Terrats-Preciat, M., Delgadillo-Diaz, M., & Aranda, J. (2016). Quality indicators and shelf life of red octopus (Octopus maya) in chilling storage. Food Science and Technology, 36(2), 304-312. https://doi.org/10.1590/1678-457X.0077

Guo, Q., Cai, J. H., Ren, C. W., Li, Y. T., Farooq, M. A., & Xu, B. (2022). A new strategy for the shelf life extension of fresh noodles by accurately targeting specific microbial species. Food Control, 138. https://doi.org/10.1016/j.foodcont.2022.109037

Gwirtz, J. A., & Garcia-Casal, M. N. (2014). Processing maize flour and corn meal food products. Annals of the New York Academy of Sciences, 1312(1), 66-75. https://doi.org/10.1111/nyas.12299

Gyawali, R., Feng, X., Chen, Y. P., Lorenzo, J. M., & Ibrahim, S. A. (2022). A review of factors influencing the quality and sensory evaluation techniques applied to Greek yogurt. Journal of Dairy Research, 89(2), 213-219. https://doi.org/10.1017/s0022029922000346

Hajar-Azhari, S., Daud, N., Muhialdin, B. J., Joghee, N., Kadum, H., & Hussin, A. S. M. (2023). Lacto-fermented garlic sauce improved the quality and extended the shelf life of lamb meat under the chilled condition. International Journal of Food Microbiology, 395. https://doi.org/10.1016/j.ijfoodmicro.2023.110190

Halloub, A., Raji, M., Essabir, H., Chakchak, H., Boussen, R., Bensalah, M. O., . . . Qaiss, A. (2022). Intelligent food packaging film containing lignin and cellulose nanocrystals for shelf life extension of food. Carbohydrate Polymers, 296. https://doi.org/10.1016/j.carbpol.2022.119972

Homayounpour, P., Sani, M. A., & Shariatifar, N. (2021). Application of nano-encapsulated Allium sativum L. essential oil to increase the shelf life of hamburger at refrigerated temperature with analysis of microbial and physical properties. Journal of Food Processing and Preservation, 45(11). https://doi.org/10.1111/jfpp.15907

Hosseini, M. S., Zahedi, S. M., Abadia, J., & Karimi, M. (2018). Effects of postharvest treatments with chitosan and putrescine to maintain quality and extend shelf-life of two banana cultivars. Food Science & Nutrition, 6(5), 1328-1337. https://doi.org/10.1002/fsn3.662

Hu, H. X., Yong, H. M., Zong, S., Jin, C. H., & Liu, J. (2022). Effect of chitosan/starch aldehyde-catechin conjugate composite coating on the quality and shelf life of fresh pork loins. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.11877

Inestroza-Lizardo, C., Mattiuz, B. H., da Silva, J. P., Galati, V. C., & Voigt, V. (2018). Hyperbaric pressure at room temperature increases post-harvest preservation of the tomato cultivar 'Debora'. Scientia Horticulturae, 228, 103-112. https://doi.org/10.1016/j.scienta.2017.10.013

Jiang, Y. J., Yang, X. Y., Jin, H. N., Feng, X. H., Tian, F., Song, Y., . . . Zhang, W. (2021). Shelf-life prediction and chemical characteristics analysis of milk formula during storage. LWT, 144. https://doi.org/10.1016/j.lwt.2021.111268

Kahlon, T. S., Avena-Bustillos, R. J., Kahlon, A. K., & Brichta, J. L. (2021). Consumer sensory evaluation and quality of Sorghum-Peanut Meal-Okra snacks. Heliyon, 7(5). https://doi.org/10.1016/j.heliyon.2021.e06874

Kato, H. C. A., Joele, M., Sousa, C. L., Ribeiro, S. C. A., & Lourenco, L. F. H. (2017). Evaluation of the Shelf Life of Tambaqui Fillet Processed by the Sous Vide Method. Journal of Aquatic Food Product Technology, 26(10), 1144-1156. https://doi.org/10.1080/10498850.2014.986593

Kaur, P., Kaur, K., Devgan, K., Kumar, M., Sandhu, K., & Kaur, A. (2022). Potential of low-dose aqueous ozone treatment and packaging to extend quality and shelf-life of green pea pods under cold storage. Journal of Food Processing and Preservation, 46(10). https://doi.org/10.1111/jfpp.16165

Kebeya, N., Nduko, J. M., & Muliro, P. S. (2021). Evaluation of Consumer Sensory Acceptability and Shelf Life of Orange-fleshed Sweet Potato-enriched Mozzarella Cheese. Current Nutrition & Food Science, 17(7), 764-772. https://doi.org/10.2174/1573401317999210422093112

Kilic-Akyilmaz, M., Kurt, C., Uzunoglu, T. P., Turkmen, F., Gunes, G., & Erem, E. (2023). Comparison of high intensity ultrasound and heat treatment for extending shelf life of a fermented milk beverage. International Dairy Journal, 141. https://doi.org/10.1016/j.idairyj.2023.105617

Kosegarten, C. E., Ramirez-Corona, N., Lopez-Malo, A., & Mani-Lopez, E. (2022). Wheat-based fried snacks shelf-life prediction using kinetic, probabilistic, and time-to-fail models. Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.16548

Ktenioudaki, A., Esquerre, C. A., Nunes, C. M. D., & O'Donnell, C. P. (2022). A decision support tool for shelf-life determination of strawberries using hyperspectral imaging technology. Biosystems Engineering, 221, 105-117. https://doi.org/10.1016/j.biosystemseng.2022.06.013

Lauteri, C., Ferri, G., & Pennisi, L. (2023). A Quality Index Method-based evaluation of sensory quality of red mullet (Mullus barbatus) and its shelf-life determination. Italian Journal of Food Safety, 12(1). https://doi.org/10.4081/ijfs.2023.10927

Lee, D. S., & Robertson, G. L. (2022). Shelf-life estimation of packaged dried foods as affected by choice of moisture sorption isotherm models. Journal of Food Processing and Preservation, 46(3). https://doi.org/10.1111/jfpp.16335

Lee, E. J., & Shin, H. S. (2019). Development of a freshness indicator for monitoring the quality of beef during storage. Food Science and Biotechnology, 28(6), 1899-1906. https://doi.org/10.1007/s10068-019-00633-5

Li, Y. J., Weng, P. F., Wu, Z. F., & Liu, Y. A. (2023). Extending the Shelf Life of Raw Milk and Pasteurized Milk with Plantaricin FB-2. Foods, 12(3). https://doi.org/10.3390/foods12030608

Li, Y. L., Zhong, K., Wang, X., Wang, H. Y., Zhang, Y. J., Shi, B. L., . . Wang, S. S. (2023). Sensory Evaluation and Model Prediction of Vacuum-Packed Fresh Corn during Long-Term Storage. Foods, 12(3). https://doi.org/10.3390/foods12030478

Liplap, P., Charlebois, D., Charles, M. T., Toivonen, P., Vigneault, C., & Raghavan, G. S. V. (2013). Tomato shelf-life extension at room temperature by hyperbaric pressure treatment. Postharvest Biology and Technology, 86, 45-52. https://doi.org/10.1016/j.postharvbio.2013.06.006

Liu, Y., Zhu, Y. L., Yang, Y., Hu, S. W., & Jiang, W. (2022). Quality improvement of shrimp (Litopenaeus vannamei) during refrigerated storage by application of Maillard peptides/water-soluble chitosan coating. Food Science & Nutrition. https://doi.org/10.1002/fsn3.2894

Liu, Y. N., Wang, R., Wang, D. B., Sun, Z. L., Liu, F., Zhang, D. Q., & Wang, D. Y. (2022). Development of a food packaging antibacterial hydrogel based on gelatin, chitosan, and 3-phenyllactic acid for the shelf-life extension of chilled chicken. Food Hydrocolloids, 127. https://doi.org/10.1016/j.foodhyd.2022.107546

Lomate, G. B., Dandi, B., & Mishra, S. (2021). Development of antimicrobial LDPE/Cu nanocomposite food packaging film for extended shelf life of peda (vol 16, pg 211, 2018). Food packaging and shelf life, 29.

Mangaraj, S., Thakur, R. R., & Nishad, P. (2023). Design of a modified atmosphere packaging for apple using concept of mathematical modeling for phytochemicals stability and shelf-life enhancement. Journal of Food Process Engineering, 46(4). https://doi.org/10.1111/jfpe.14285

Manthou, E., Tarlak, F., Lianou, A., Ozdemir, M., Zervakis, G. I., Panagou, E. Z., & Nychas, G. J. E. (2019). Prediction of indigenous Pseudomonas spp. growth on oyster mushrooms (Pleurotus ostreatus) as a function of storage temperature. LWT, 111, 506-512. https://doi.org/10.1016/j.lwt.2019.05.062

Mayookha, V. P., Pandiselvam, R., Kothakota, A., Ishwarya, S. P., Khanashyam, A. C., Kutlu, N., . . . El-Maksoud, A. A. A. (2023). Ozone and cold plasma: Emerging oxidation technologies for inactivation of enzymes in fruits, vegetables, and fruit juices. Food Control, 144. https://doi.org/10.1016/j.foodcont.2022.109399

Montone, A. M. I., Malvano, F., Taiano, R., Capparelli, R., Capuano, F., & Albanese, D. (2023). Alginate Coating Charged by Hydroxyapatite Complexes with Lactoferrin and Quercetin Enhances the Pork Meat Shelf Life. Foods, 12(3). https://doi.org/10.3390/foods12030553

Moradi, D., Ramezan, Y., Eskandari, S., Mirsaeedghazi, H., & Dakheli, M. J. (2023). Plasma-treated LDPE film incorporated with onion and potato peel extract-A food packaging for shelf life extension on chicken thigh. Food packaging and shelf life, 35. https://doi.org/10.1016/j.fpsl.2022.101012

Moura-Alves, M., Machado, C., Silva, J. A., & Saraiva, C. (2022). Shelf-life determination of an egg-based cake, relating sensory attributes microbiological characteristics and physico-chemical properties. International Journal of Food Science and Technology, 57(10), 6580-6590. https://doi.org/10.1111/ijfs.16001

Nguyen, M. P. (2020). Impact of Alginate Coating on Shelf life and Quality of Carrot (Daucus carota L.) during Storage. Bioscience Research, 17(1), 366-370.

Ogura, N., Nakagawa, H., & Takehana, H. (1975). Effect of high temperature short term storage of mature green tomato fruits on changes of their chemical composition after ripening at room-temperature - studies on storage temperature of tomato fruits. Journal of the Agricultural Chemical Society of Japan, 49(4), 189-196. https://doi.org/10.1271/nogeikagaku1924.49.189

Ouahioune, L. A., Wrona, M., Nerín, C., & Djenane, D. (2022). Novel active biopackaging incorporated with macerate of carob (Ceratonia siliqua L.) to extend shelf-life of stored Atlantic salmon fillets (Salmo salar L.). LWT, 156. https://doi.org/10.1016/j.lwt.2021.113015

Palanisamy, S., Selvaraju, G. D., Selvakesavan, R. K., Venkatachalam, S., Bharathi, D., & Lee, J. T. (2024). Unlocking sustainable solutions: Nanocellulose innovations for enhancing the shelf life of fruits and vegetables - A comprehensive review. International journal of biological macromolecules, 261. https://doi.org/10.1016/j.ijbiomac.2024.129592

Pal, S., & Bhattacharjee, P. (2018). Polypropylene-based packaging materials for shelf-life enhancement of yellow corn (Zea mays) kernels: Effects on lutein, aflatoxin content, sensory, and nutritional profiles. Journal of Food Processing and Preservation, 42(6). https://doi.org/10.1111/jfpp.13618

Pande, H., Kapse, S., Krishnan, V., Kausley, S., Satyavathi, C. T., & Rai, B. (2024). Prediction of Shelf Life of Pearl Millet Flour Based on Rancidity and Nutritional Indicators Using a Long Short-Term Memory Network Model. ACS Food Science & Technology, 4(3), 786-795. https://doi.org/10.1021/acsfoodscitech.4c00005

Park, J. M., Lee, S. H., Koh, J. H., & Kim, J. M. (2018). Determination of Shelf Life Model of Pork Cutlet and Pork Lard during Accelerated Storage Conditions. Korean Journal for Food Science of Animal Resources, 38(4), 664-678. https://doi.org/10.5851/kosfa.2018.e3

Patrignani, M., Battaiotto, L. L., & Conforti, P. A. (2022). Development of a good quality honey biscuit filling: Optimization, sensory properties and shelf life analysis. International Journal of Gastronomy and Food Science, 28. https://doi.org/10.1016/j.ijgfs.2022.100508

Pedros-Garrido, S., Clemente, I., Calanche, J. B., Condon-Abanto, S., Beltran, J. A., Lyng, J. G., . . . Whyte, P. (2020). Antimicrobial activity of natural compounds against listeria spp. and their effects on sensory attributes in salmon (Salmo salar) and cod (Gadus morhua). Food Control, 107. https://doi.org/10.1016/j.foodcont.2019.106768

Pedros-Garrido, S., Condon-Abanto, S., Clemente, I., Beltran, J. A., Lyng, J. G., Bolton, D., . . . Whyte, P. (2018). Efficacy of ultraviolet light (UV-C) and pulsed light (PL) for the microbiological decontamination of raw salmon (Salmo solar) and food contact surface materials. Innovative Food Science & Emerging Technologies, 50, 124-131. https://doi.org/10.1016/j.ifset.2018.10.001

Petric, T., Kiferle, C., Perata, P., & Gonzali, S. (2018). Optimizing shelf life conditions for anthocyanin-rich tomatoes. PLoS One, 13(10). https://doi.org/10.1371/journal.pone.0205650

Pilavtepe-Celik, M., & Buzrul, S. (2021). Shelf-life Estimation of Mullet (Mugil cephalus) Fillets by Mathematical Models Based on Some Biochemical Parameters and Sensory Evaluation. Kafkas Universitesi Veteriner Fakultesi Dergisi, 27(5), 625-631. https://doi.org/10.9775/kvfd.2021.25998

Pivovarov, O., Kovalova, O., Koshulko, V., & Aleksandrova, A. (2021). Study of use of antiseptic ice of plasma-chemically activated aqueous solutions for the storage of food raw materials. Journal of Food Science and Technology-Ukraine, 15(4), 95-105. https://doi.org/10.15673/fst.v15i4.2260

Pouyamanesh, M., Ahari, H., Anvar, A. A., & Karim, G. (2022). Packaging based on Ag-Low Density Polyethylene for shelf-life extension of pasteurized and traditional butters at refrigerated temperature. Food Science and Technology, 42. https://doi.org/10.1590/fst.67020

Qi, T. T., Ji, J., Zhang, X. L., Liu, L., Xu, X. H., Ma, K. L., & Gao, Y. T. (2022). Research progress of cold chain transport technology for storage fruits and vegetables. Journal of Energy Storage, 56. https://doi.org/10.1016/j.est.2022.105958

Qiu, Z. Z., & Chin, K. B. (2022). Evaluation of physicochemical properties and shelf life of regular-fat model sausages by wrapping with sodium alginate active film containing different levels and drying method of lotus rhizome root powder. Journal of Food Processing and Preservation, 46(11). https://doi.org/10.1111/jfpp.16996

Romanazzi, G., & Moumni, M. (2022). Chitosan and other edible coatings to extend shelf life, manage postharvest decay, and reduce loss and waste of fresh fruits and vegetables. Current Opinion in Biotechnology, 78. https://doi.org/10.1016/j.copbio.2022.102834

Salinas-Hernandez, R. M., Gonzalez-Aguilar, G. A., & Tiznado-Hernandez, M. E. (2015). Utilization of physicochemical variables developed from changes in sensory attributes and consumer acceptability to predict the shelf life of fresh-cut mango fruit. Journal of Food Science and Technology-Mysore, 52(1), 63-77. https://doi.org/10.1007/s13197-013-0992-0

Samani, E. S., Jooyandeh, H., & Behbahani, B. A. (2023). The impact of Zedo gum based edible coating containing Zataria multiflora Boiss essential oil on the quality enhancement and shelf life improvement of fresh buffalo meat. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694-023-01811-0

Sanchez-Rivera, M. M., & Bello-Perez, L. A. (2008). Effect of temperature in the oxidation reaction of banana starch (Musa paradisiaca l.). activation energy determination. Revista Mexicana de Ingeniería Química, 7(3), 275-281.

Santos, A. C., de Oliveira, R. F., Henry, F. D., Maia, J. D., Moulin, M. M., Della Lucia, S. M., . . . Rampe, M. C. C. (2020). Physicochemical composition, lipid oxidation, and microbiological quality of ram mortadella supplemented with Smallanthus sonchifolius meal. Food Science & Nutrition, 8(11), 5953-5961. https://doi.org/10.1002/fsn3.1880

Sarika, K., Jayathilakan, K., Lekshmi, R. G. K., Priya, E. R., Greeshma, S. S., & Rajkumar, A. (2019). Omega-3 enriched Granola bar: Formulation and Evaluation under different Storage Conditions. Fishery Technology, 56(2), 130-139.

Sierra, N. M., Londono, A., Gomez, J. M., Herrera, A. O., & Castellanos, D. A. (2019). Evaluation and modeling of changes in shelf life, firmness and color of 'Hass' avocado depending on storage temperature. Food Science and Technology International, 25(5), 370-384. https://doi.org/10.1177/1082013219826825

Sikora, M., & Swieca, M. (2018). Effect of ascorbic acid postharvest treatment on enzymatic browning, phenolics and antioxidant capacity of stored mung bean sprouts. Food Chemistry, 239, 1160-1166. https://doi.org/10.1016/j.foodchem.2017.07.067

Singh, R. (2000). Scientific Principles of Shelf-Life Evaluation in MAN, CMD; JONES, AA 2000. Shelf-life Evaluation of Foods. In: Springer.

Singh, V., Aggarwal, P., Kaur, S., & Kaur, N. (2022). Intermediate moisture date (Phoenix dactylifera L.) based dessert with natural sugars: Phytonutritional profile, characterization, sensory quality, and shelf-life studies. Journal of Food Processing and Preservation, 46(12). https://doi.org/10.1111/jfpp.17237

Sistková, I., & Cizková, H. (2024). Methods for Determining and Predicting Shelf Life of Food Products. Chemicke Listy, 118(4), 211-219. https://doi.org/10.54779/chl20240211

Sylchuk, T., Tsyrulnikova, V., Zuiko, V., & Riznyk, A. (2021). Sorption properties of bread based on oatmeal. Ukrainian Food Journal, 10(2), 361-374. https://doi.org/10.24263/2304-974x-2021-10-2-12

Tantratian, S., & Kaephen, K. (2020). Shelf-life of shucked oyster in epigallocatechin-3-gallate with slightly acidic electrolyzed water washing under refrigeration temperature. LWT, 118. https://doi.org/10.1016/j.lwt.2019.108733

Tarlak, F. (2020). Development and validation of one-step modelling approach for prediction of mushroom spoilage. Journal of Food and Nutrition Research, 59(4), 281-289.

Tavakoli, S., Regenstein, J. M., Daneshvar, E., Bhatnagar, A., Luo, Y. K., & Hong, H. (2022). Recent advances in the application of microalgae and its derivatives for preservation, quality improvement, and shelf-life extension of seafood. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2021.1895065

Temdee, W., Singh, A., Zhang, B., & Benjakul, S. (2022). Effect of vacuum packaging on shelf-life extension of cooked and peeled harpiosquillid mantis shrimp (Harpiosquilla raphidea) during refrigerated storage. International Journal of Food Science and Technology, 57(7), 4451-4462. https://doi.org/10.1111/ijfs.15778

Van der Vossen-Wijmenga, W. P., Zwietering, M. H., Boer, E. P. J., Velema, E., & den Besten, H. M. W. (2022). Perception of food-related risks: Difference between consumers and experts and changes over time. Food Control, 141. https://doi.org/10.1016/j.foodcont.2022.109142

Wang, L. X., & Teplitski, M. (2023). Microbiological food safety considerations in shelf-life extension of fresh fruits and vegetables. Current Opinion in Biotechnology, 80. https://doi.org/10.1016/j.copbio.2023.102895

Wickramaarachchi, L. A., Rajawardana, D. U., Gunasekara, M., Herath, H. M. T., & Jayasinghe, M. A. (2024). Development and evaluation of physico-chemical, sensorial, and shelf- life of grain-milk beverages. Journal Of Cereal Science, 116. https://doi.org/10.1016/j.jcs.2024.103875

Wright, H. J., Hou, J., Xu, B. Z., Cortez, M., Potma, E. O., Tromberg, B. J., & Razorenova, O. V. (2017). CDCP1 drives triple-negative breast cancer metastasis through reduction of lipid-droplet abundance and stimulation of fatty acid oxidation. Proceedings of the National Academy of Sciences of the United States of America, 114(32), E6556-E6565. https://doi.org/10.1073/pnas.1703791114

Xia, J. Y., Jiang, N., Zhang, B., Sun, R. X., Zhu, Y. Z., Xu, W. C., . . . Ma, Y. H. (2023). Bacterial Changes in Boiled Crayfish between Different Storage Periods and Characterizations of the Specific Spoilage Bacteria. Foods, 12(16). https://doi.org/10.3390/foods12163006

Xie, H. K., Zhou, D. Y., Hu, X. P., Liu, Z. Y., Song, L., & Zhu, B. (2018). Changes in Lipid Profiles of Dried Clams (Mactra chinensis Philippi and Ruditapes philippinarum) during Accelerated Storage and Prediction of Shelf Life. Journal of Agricultural and Food Chemistry, 66(29), 7764-7774. https://doi.org/10.1021/acs.jafc.8b03047

Yang, S. Y., Su, X. G., Prasad, K. N., Yang, B., Cheng, G. P., Chen, Y. L., . . . Jiang, Y. M. (2008). Oxidation and peroxidation of postharvest banana fruit during softening. Pakistan Journal of Botany, 40(5), 2023-2029.

Yang, X. Y., Xu, B. C., Lei, H. M., Luo, X., Zhu, L. X., Zhang, Y. M., . . . Liang, R. R. (2022). Effects of grape seed extract on meat color and premature browning of meat patties in high-oxygen packaging. Journal of Integrative Agriculture, 21(8), 2445-2455. https://doi.org/10.1016/s2095-3119(21)63854-6

Yin, C., Wang, J., Qian, J., Xiong, K., & Zhang, M. (2022). Quality changes of rainbow trout stored under different packaging conditions and mathematical modeling for predicting the shelf life. Food packaging and shelf life, 32, 100824. https://doi.org/10.1016/j.fpsl.2022.100824

Yuceer, M., & Caner, C. (2022). Investigate the enzyme-texturized egg albumen on the functionality, sensorial and textural characteristics of cooked meringue cookies during storage. Journal of Food Measurement and Characterization, 16(4), 2961-2968. https://doi.org/10.1007/s11694-022-01397-z

Zambon, A., Gonzalez-Alonso, V., Lomolino, G., Zulli, R., Rajkovic, A., & Spilimbergo, S. (2023). Increasing the Safety and Storage of Pre-Packed Fresh-Cut Fruits and Vegetables by Supercritical CO2 Process. Foods, 12(1). https://doi.org/10.3390/foods12010021

Zarandona, I., López-Caballero, M. E., Montero, M. P., Guerrero, P., de la Caba, K., & Gómez-Guillén, M. C. (2021). Horse mackerel (Trachurus trachurus) fillets biopreservation by using gallic acid and chitosan coatings. Food Control, 120, 107511. https://doi.org/10.1016/j.foodcont.2020.107511

Zielinska, D., Bilska, B., Marciniak-Lukasiak, K., Lepecka, A., Trzaskowska, M., Neffe-Skocinska, K., . . . Kolozyn-Krajewska, D. (2020). Consumer Understanding of the Date of Minimum Durability of Food in Association with Quality Evaluation of Food Products After Expiration. International Journal of Environmental Research and Public Health, 17(5). https://doi.org/10.3390/ijerph17051632

Downloads

Published

2024-07-16

How to Cite

Espinoza-Tellez, T., Quevedo-León, R. ., & Diaz-Carrasco, O. . (2024). Indicator values for food shelf life prediction: A review. Scientia Agropecuaria, 15(3), 429-448. https://doi.org/10.17268/sci.agropecu.2024.032

Issue

Section

Review Articles

Most read articles by the same author(s)