Agricultural, forestry, textile and food waste used in the manufacture of biomass briquettes: a review


  • Teófilo Espinoza-Tellez Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Av. Alberto Fuchslocher 1305, Región de los Lagos, Osorno.
  • José Bastías Departamento Ingeniería en Alimentos, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán.
  • Roberto Quevedo-León Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Av. Alberto Fuchslocher 1305, Región de los Lagos, Osorno.
  • Emir Valencia-Aguilar Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Av. Alberto Fuchslocher 1305, Región de los Lagos, Osorno.
  • Haroldo Aburto Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Av. Alberto Fuchslocher 1305, Región de los Lagos, Osorno.
  • Dagoberto Díaz-Guineo Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Av. Alberto Fuchslocher 1305, Región de los Lagos, Osorno.
  • Miguel Ibarra-Garnica Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Av. Alberto Fuchslocher 1305, Región de los Lagos, Osorno.
  • Oscar Díaz-Carrasco Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Av. Alberto Fuchslocher 1305, Región de los Lagos, Osorno.


Palabras clave:

agriculture, waste, energy, biomass, briquette, pellet.


In recent decades there has been a considerable global increase in urban population, industrial productivity, energy demand, waste generation, and the emission of greenhouse gases from energy conversion. The agricultural, forestry, textile and food sectors generate large amounts of waste and their environmental impact has become a major cause for concern in societies around the world. Current efforts are concerned with maximization of combustion efficiency and energy-related processes in general by making use of industrial residues and reducing particulate matter. The present review addresses the availability of different types of biomass that can be used to produce renewable energy and focuses on agricultural, forestry, urban and industrial residues. It also provides a description of the physical and calorific characteristics of the various raw materials available for the manufacture of briquettes and other fossil fuel alternatives.


Acikgoz, O.; Gunay, A. 2020. The early impact of the Covid-19 pandemic on the global and Turkish economy. Turkish Journal of Medical Sciences 50: 520-526.

Ahmad, T.; Belwal, T.; Li, L.; et al. 2020. Utilization of wastewater from edible oil industry, turning waste into valuable products: A review. Trends in Food Science & Technology 99: 21-33.

Alanya-Rosenbaum, S.; Bergman, R.D. 2019. Life-cycle impact and exergy based resource use assessment of torrefied and non-torrefied briquette use for heat and electricity generation. Journal of Cleaner Production 233: 918-931.

Alarenan, S.; Gasim, A.A.; Hunt, L.C. 2020. Modelling industrial energy demand in Saudi Arabia. Energy Economics 104554 85: 1-10.

Alaru, M.; Kukk, L.; Olt, J.; et al. 2011. Lignin content and briquette quality of different fibre hemp plant types and energy sunflower. Field Crops Research 124: 332-339.

Alexander, P.; Brown, C.; Arneth, A.; et al. 2017. Losses, inefficiencies and waste in the global food system. Agricultural Systems 153: 190-200.

Amarasekara, A.; Tanzim, F.S.; Asmatulu, E. 2017. Briquetting and carbonization of naturally grown algae biomass for low-cost fuel and activated carbon production. Fuel 208: 612-617.

Anggono, W.; Sutrisno; Suprianto, F.D.; et al. 2018. Biomass Briquette Investigation from Pterocarpus Indicus Twigs Waste as an Alternative Renewable Energy. International Journal of Renewable Energy Research 8: 1393-1400.

Antwi-Boasiako, C.; Acheampong, B. 2016. Strength properties and calorific values of sawdust-briquettes as wood-residue energy generation source from tropical hardwoods of different densities. Biomass and Bioenergy 85: 144-152.

Aransiola, E.; Oyewusi, T.; Osunbitan, J.; et al. 2019. Effect of binder type, binder concentration and compacting pressure on some physical properties of carbonized corncob briquette. Energy Reports 5: 909-918.

Arias, T.; López, L. 2015. Propuesta tecnológica para el aprovechamiento energético del bagazo de cebada malteada de la cervecería Hatuey. Revista Científica de Tecnología Química 35: 256-270.

Arulprakasajothi, M.; Beemkumar, N.; Parthipan, J.; et al. 2020. Investigating the Physio-chemical Properties of Densified Biomass Pellet Fuels from Fruit and Vegetable Market Waste. Arabian Journal for Science and Engineering 45: 563-574

Arvanitoyannis, I.S.; Kassaveti, A.; Stefanatos, S. 2007. Current and potential uses of thermally treated olive oil waste. International Journal of Food Science and Technology 42: 852-867.

Avelar, N.; Rezende, A.; Carneiro, A.; et al. 2016. Evaluation of briquettes made from textile industry solid waste. Renewable Energy 91: 417-424.

Ayala-Mendivil, N.; Sandoval, G. 2018. Bioenergy from forest and wood residues. Madera Y Bosques 24: 1-14.

Ayerst, S.; Brandt, L.; Restuccia, D. 2020. Market constraints, misallocation, and productivity in Vietnam agriculture. Food Policy 101840: 1-16.

Balasubramani, P.; Anbumalar, V.; Nagarajan, M.; et al. 2016. Biomass briquette manufacturing system model for environment. Journal of Alloys and Compounds 686: 859-865.

Bautista-Ramírez, E.; Salinas-Moreno, Y.; Santracruz-Varela, A.; et al. 2019. Características físicas y químicas de la raza de maíz Palomero Toluqueño. Revista Mexicana de Ciencias Agrícolas 10: 441-446.

Benie, G.B.; Kabore, S.S.; Goita, K.; et al. 2005. Remote sensing-based spatio-temporal modeling to predict biomass in Sahelian grazing ecosystem. Ecological Modelling 184: 341-354.

Berastegui, C.; Ortega, J.; Mendoza, J.; et al. 2017. Elaboración de biocombustibles sólidos densificados a partir de tusa de maíz, bioaglomerante de yuca y carbón mineral del departamento de Córdoba. Ingeniare. Revista Chilena de Ingeniería 25: 643-653.

Boutesteijn, C.; Drabik, D.; Venus, T.J. 2017. The interaction between EU biofuel policy and first- and second-generation biodiesel production. Industrial Crops and Products 106: 124-129.

Brunerova, A.; Roubik, H.; Brozek, M. 2018. Bamboo Fiber and Sugarcane Skin as a Bio-Briquette Fuel. Energies 11: 1-20.

Busov, V.B. 2018. Manipulation of Growth and Architectural Characteristics in Trees for Increased Woody Biomass Production. Frontiers in Plant Science 9: 1-8.

Buzby, J. C.; Hyman, J. 2012. Total and per capita value of food loss in the United States. Food Policy 37: 561-570.

Calvo, S.; Williams, G. 2019. Reutilización de residuos textiles: Industria, contexto, situación en Chile y legislación comparada. In "Biblioteca del Congreso Nacional de Chile ". Nº SUP: 0932223 1-7.

Campuzano-Duque, L.; Ríos, L.; Cardeño-López, F. 2016. Caracterización composicional del fruto de 15 variedades de Jatropha curcas L. en el departamento del Tolima, Colombia. Corpoica Cienc Tecnol Agropecuaria 17: 379-390.

Cattaneo, A.; Federighi, G.; Vaz, S. 2020. El impacto ambiental de reducir la pérdida y el desperdicio de alimentos: una evaluación crítica. Food policy 101890: 1-16.

Çetinay, H.; Donati, F.; Heijungs, R.; et al. 2020. Efficient computation of environmentally extended input-output scenario and circular economy modeling. Journal of Industrial Ecology 13013: 1-10.

Chiou, I.; Wu, I. 2014. Evaluating the manufacturability and combustion behaviors of sludge-derived fuel briquettes. Waste Management 34: 1847-1852.

Chiou, I.J.; Chen, C.H.; Liu, W.L.; et al. 2015. Fuel briquettes from food-processing sludge. Environmental Progress & Sustainable Energy 34: 1790-1795.

Chungcharoen, T.; Srisang, N. 2020. Preparation and characterization of fuel briquettes made from dual agricultural waste: Cashew nut shells and areca nuts. Journal of Cleaner Production 256: 1-143.

Clavijo, L.; Zlatanovic, S.; Braun, G.; et al. 2020. Eucalyptus Kraft Lignin as an Additive Strongly Enhances the Mechanical Resistance of Tree-Leaf Pellets. Processes 8: 1-9.

Cramer, J.M. 2020. Practice-based model for implementing circular economy: The case of the Amsterdam Metropolitan Area. Journal of Cleaner Production 255: 1-9.

D’Agua, J.; Pereira, R.; Marinho, F. 2015. Preparación y Caracterización Física del Biocombustible Sólido del Lirio Acuático (Eichhornia crassipes). Información Tecnológica 26: 53-62.

Dau, G.; Scavarda, A.; Scavarda, L.F.; et al. 2019. The Healthcare Sustainable Supply Chain 4.0: The Circular Economy Transition Conceptual Framework with the Corporate Social Responsibility Mirror. Sustainability 11: 1-19.

Davydenko, A.; Mostafaee, S.; Karasev, A.; et al. 2014. Caracterización de briquetas de escoria espumante en el horno de arco eléctrico durante la producción de acero inoxidable. Steel research international 86: 137-145.

de Bikuna, K.S.; Garcia, R.; Dias, A.C.; et al. 2020. Global warming implications from increased forest biomass utilization for bioenergy in a supply-constrained context. Journal of Environmental Management 263: 1-10.

de Moraes, M.D.A.; da Silva, M.F.; Barbosa, P.V.G.; et al. 2019. Characterization of Khaya ivorensis (A. Chev) biomass, charcoal and briquettes. Scientia Forestalis 47: 34-44.

de Oliveira, B.; Souzab, O.; Marangonib, C.; et al. 2014. Production and Characterization of Fuel Briquettes from Banana Leaves Waste Chemical Engineering Transactions 37: 439-444

Deac, T.; Fechete-Tutunaru, L.; Gaspar, F. 2016. Environmental Impact of Sawdust Briquettes Use an Experimental Approach. Energy Procedia 85: 178-183.

Durango, E.; Berastegui, C.; Mendoza, J. 2019. Efecto de la adición de aglomerantes en las propiedades mecánicas de los pellets de biomasa. Ingeniare. Revista Chilena de Ingeniería 27: 83-88.

Elkhalifa, S.; Al-Ansari, T.; Mackey, H.R.; et al. 2019. Food waste to biochars through pyrolysis. Resources Conservation and Recycling 144: 310-320.

Fernandez, B.O.; Goncalves, B.F.; Pereira, A.C.C.; et al. 2017. Mechanical and Energetic Characteristics of Briquettes Produced from Different Types of Biomass. Revista Virtual De Quimica 9: 29-38.

Forero-Núñez, C.; Camargo-Vargas, G.; Sierra-Vargas, F. 2014. Modelos de compresión aplicados al proceso de densificación de combustibles sólidos binarios carbón-madera. Iteckne 11: 196-203.

Frison, E.; Clément, C. 2020. El potencial de los sistemas agroecológicos diversificados para ofrecer resultados saludables: establecer el vínculo entre la agricultura, los sistemas alimentarios y la salud. Food policy 101851: 1-8.

Gangil, S. 2015. Superiority of intrinsic biopolymeric constituents in briquettes of lignocellulosic crop residues over wood: A TG-diagnosis. Renewable Energy 76: 478-483.

Gao, J.Q.; Yang, X.G.; Zheng, B.Y.; et al. 2019. Effects of climate change on the extension of the potential double cropping region and and crop water requirements in Northern China. Agricultural and Forest Meteorology 268: 146-155.

García-García, G.; Woolley, E.; Rahimifard, S. 2017. Optimizando la Gestión de Residuos Industriales de Alimentos. Procedia Manufacturing 8: 432-439

Gendek, A.; Aniszewska, M.; Malaťák, J.; et al. 2018. Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomass and Bioenergy 117: 173-179.

Gesase, L.; King'ondu, C.; Jande, Y. 2020. Briquetas de polvo de carbón de leña envasadas e infundidas con bioetanol Manihot glaziovii: una nueva ruta para abordar los problemas de sostenibilidad, ignición y seguridad alimentaria en la producción de briquetas. Investigación bioenergética 13: 378-386.

Go, A.; Conag, A.; Igdon, R.; et al. 2019. Potentials of agricultural and agro-industrial crop residues for thedisplacement of fossil fuels: A Philippine contex. Energy Strategy Reviews 23: 100-113.

Griffin, M.; Sobal, J.; Lyson, T. A. 2009. An analysis of a community food waste stream. Agriculture and Human Values 26: 67-81.

Guo, X.L.; Zhang, T.J. 2020. Utilization of municipal solid waste incineration fly ash to produce autoclaved and modified wall blocks. Journal of Cleaner Production 252: 1-13.

Gustavsson, J.; Cederberg, C.; Sonesson, U.; et al. 2011. Global Food Losses and Food Waste. In "Food and agriculture organization of the united nations", Vol. ISBN 978-92-5-107205-9. 1-37.

Gutierrez-Macias, P.; Montanez-Barragan, B.; Barragan-Huerta, B.E. 2015. A review of agro-food waste transformation into feedstock for use in fermentation. Fresenius Environmental Bulletin 24: 3703-3716.

Hansted, A.; Nakashima, G.; Martins, M.; et al. 2016. Caracterização Físico-Química da Biomassa de Leucaena leucocephala para Produção de Combustível Sólido Rev. Virtual Quim. 20: 1-12.

Hedman, B.; Burvall, J.; Nilsson, C.; et al. 2007. PCDD/F in source-sorted waste fractions and emissions from their co-combustion with reed canary-grass. Waste Management 27: 1580-1592.

Hernandez, J.J.; Ballesteros, R.; Barba, J.; et al. 2015. Effect of the Addition of Biomass Gasification Gas on the PM Emission of a Diesel Engine. Sae International Journal of Engines 8: 14-19.

Hidalgo, D.; Antolín, G.; Alvarellos, I.; et al. 2018. Producción de biometano para combustible de transporte a partir de residuos de biomasa. In "Biometrans". Cyted, 1-148.

Hoyos, C.; González, Y.; Mendoza, J. 2019. Elaboración de biocombustibles sólidos densificados a partir de la mezcla de dos biomasas residuales, un aglomerante a base de yuca y carbón mineral, propios del departamento de Córdoba. Ingeniare. Revista Chilena de Ingeniería 27: 454-464.

Jabbour, C.J.C.; Seuring, S.; Jabbour, A.; et al. 2020. Stakeholders, innovative business models for the circular economy and sustainable performance of firms in an emerging economy facing institutional voids. Journal of Environmental Management 264: 1-13.

Jacinto, R.C.; Brand, M.A.; Rios, P.D.; et al. 2016. Analysis of the energy quality pinion fails to produce briquettes. Scientia Forestalis 44: 821-829.

Jackson, R.W.; Neto, A.B.F.; Erfanian, E. 2018. Woody biomass Processing: Potential economic impacts on rural regions. Energy Policy 115: 66-77.

Jafari, H. 2019. Sustainable development by reusing of recyclables in a textile industry including two collectors and three firms: A game-theoretic approach for pricing decisions. Journal of Cleaner Production 229: 598-610.

Jain, M. S.; Kalamdhad, A. S. 2020. Soil revitalization via waste utilization: Compost effects on soil organic properties, nutritional, sorption and physical properties. Environmental Technology Innovation 18: 1-38.

Jalgaonkar, K.; Mahawar, M.K.; Bibwe, B.; et al. 2020. Postharvest Profile, Processing and Waste Utilization of Dragon Fruit (Hylocereus Spp.): A Review. Food Reviews International 101080: 1-27.

Jasiunas, L.; Skvorcinskiene, R.; Miknius, L. 2020. Wet and Coarse: The Robustness of Two-Stage Crude Glycerol Mediated Solvothermal Liquefaction of Residual Biomass. Waste and Biomass Valorization 11: 2171-2181.

Javed, U.; Ansari, A.; Aman, A.; et al. 2019. Fermentation and saccharification of agro-industrial wastes: A cost-effective approach for dual use of plant biomass wastes for xylose production. Biocatalysis and Agricultural Biotechnology 21: 1-6.

Ji, C.; Cheng, K.; Nayak, D.; et al. 2018. Environmental and economic assessment of crop residue competitiveutilization for biochar, briquette fuel and combined heat and powergeneration. Journal of Cleaner Production 192: 916-923.

Karner, K.; Dissauer, C.; Enigl, M.; et al. 2017. Environmental trade-offs between residential oil-fired and wood pellet heating systems: Forecast scenarios for Austria until 2030. Renewable & Sustainable Energy Reviews 80: 868-879.

Kayo, C.; Ojimi, R.; Iwaoka, M.; et al. 2016. Greenhouse Gas Emission Reductions in a District Heating and Cooling System by Using Woody Biomass A study in Shiwa, Iwate Prefecture. Mokuzai Gakkaishi 62: 172-181.

Kaza, S.; Yao, L.; Bhada-Tata, P.; et al. 2018. What a Waste 2.0: una instantánea global de la gestión de residuos sólidos para 2050 Banco mundial 2174: 1-38.

Kim, M. 2019. Export Competitiveness of India's Textiles and Clothing Sector in the United States. Economies 7: 1-17.

Ko, S.; Lautala, P.; Fan, J.Q.; et al. 2019. Economic, social, and environmental cost optimization of biomass transportation: a regional model for transportation analysis in plant location process. Biofuels Bioproducts & Biorefining-Biofpr 13: 582-598.

Kokkinos, K.; Karayannis, V.; Moustakas, K. 2020. Circular bio-economy via energy transition supported by Fuzzy Cognitive Map modeling towards sustainable low-carbon environment. Science of the Total Environment 721: 1-54.

Landi, D.; Gigli, S.; Germani, M.; et al. 2018. Investigating the feasibility of a reuse scenario for textile fibres recovered from end-of-life tyres. Waste Management 75: 187-204.

Liu, B.; Rajagopal, D. 2019. Life-cycle energy and climate benefits of energy recovery from wastes and biomass residues in the United States. Nature Energy 4: 700-708.

Lomborg, B. 2020. Welfare in the 21st century: Increasing development, reducing inequality, the impact of climate change, and the cost of climate policies. Technological Forecasting and Social Change 156: 1-35.

Lucato, W.C.; Costa, E.M.; Neto, G.C.D. 2017. The environmental performance of SMEs in the Brazilian textile industry and the relationship with their financial performance. Journal of Environmental Management 203: 550-556.

Ludevese-Pascual, G.; Dela Pena, M.; Tornalejo, J. 2016. Biomass production, proximate composition and fatty acid profile of the local marine thraustochytrid isolate, Schizochytrium sp LEY7 using low-cost substrates at optimum culture conditions. Aquaculture Research 47: 318-328.

Lunguleasa, A.; Ayrilmis, N.; Spirchez, C.; et al. 2019. Increasing the Calorific Properties of Sawdust Waste from Pellets by Torrefaction. Bioresources 14: 7821-7839.

Makela, M.; Fullana, A.; Yoshikawa, K. 2016. Ash behavior during hydrothermal treatment for solid fuel applications. Part 1: Overview of different feedstock. Energy Conversion and Management 121: 402-408.

Mandal, S.; Kumar, G.V. P.; Bhattacharya, T.K.; et al. 2019. Briquetting of Pine Needles (Pinus roxburgii) and Their Physical, Handling and Combustion Properties. Waste and Biomass Valorization 10: 2415-2424.

Manzoor, A.; Qazi, J.I.; ul Haq, I.; et al. 2017. Significantly enhanced biomass production of a novel bio-therapeutic strain Lactobacillus plantarum (AS-14) by developing low cost media cultivation strategy. Journal of Biological Engineering 11: 1-10.

Maradiaga, W.; Evangelista, A.; Sette Jr, C.; et al. 2017. Producción de briquetas con residuos de cáscara de piñón manso (Jatropha curcas) y bagazo de caña de azúcar. Bosque 38: 527-533.

Marrugo, G.; Valdes, C.; Gomez, C.; et al. 2019. Pelletizing of Colombian agro-industrial biomasses with crude glycerol. Renewable Energy 134: 558-568.

Martín, F. 2014. Pélets y briquetas. Ecología 2293: 54-62.

Martinez, J.F.G.; Gomez, L.M.T.; Guzman, M.F.S.; et al. 2020. Energy from biomass: alternative for the reduction of atmospheric emissions. Revista Digital Lampsakos 2145: 70-78.

Masud, M.; Ananno, A.; Ahmed, N.; et al. 2020. Investigación experimental de un novedoso sistema de secado de alimentos basado en calor residual. Journal of Food Engineering 281: 1-12.

Moliner, C.; Teruel-Juanes, R.; Primaz, C.T.; et al. 2018. Reduction of Nitrates in Waste Water through the Valorization of Rice Straw: Life libernitrate Project. Sustainability 10: 1-12.

Momete, D.C. 2020. A unified framework for assessing the readiness of European Union economies to migrate to a circular modelling. Science of the Total Environment 718: 1-9.

Morales-Maximo, M.; Ruiz-Garcia, V.M.; Lopez-Sosa, L.B.; et al. 2020. Exploitation of Wood Waste of Pinus spp for Briquette Production: A Case Study in the Community of San Francisco Pichataro, Michoacan, Mexico. Applied Sciences-Basel 10: 1-20.

Moustakas, K.; Loizidou, M.; Rehan, M.; et al. 2020. A review of recent developments in renewable and sustainable energy systems: Key challenges and future perspective. Renewable y Sustainable Energy Reviews 119: 1-6.

Muñoz-Muñoz, D.; Pantoja-Matta, A.; Cuatin-Guarin, M. 2014. Aprovechamiento de residuos agroindustriales como biocombustible y biorefinería. Rev.Bio.Agro 12: 10-19.

Murphy, F.; Sosa, A.; McDonnell, K.; et al. 2016. Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction. Energy 109: 1040-1055.

Musa, S. D.; Tang, Z. H.; Ibrahim, A. O., et al. 2018. China's energy status: A critical look at fossils and renewable options. Renewable & Sustainable Energy Reviews 81: 2281-2290.

Mutz, D.; Hengevoss, D.; Hugi, C.; et al. 2017. Opciones para el aprovechamiento energético de residuos en la gestión de residuos sólidos urbanos (Gíz, ed.), pp. 1-60.

Myrin, E.S.; Persson, P.E.; Jansson, S. 2014. The influence of food waste on dioxin formation during incineration of refuse-derived fuels. Fuel 132: 165-169.

Narciso, G. 2020. Crop prices and the individual decision to migrate. Food policy 91: 1-9.

Nations-United. 2014. World Urbanization Prospects. 352: 1-32.

Nations-United. 2019. How certain are the United Nations global population projections? 6: 1-4.

Navone, L.; Moffitt, K.; Hansen, K.A.; et al. 2020. Closing the textile loop: Enzymatic fibre separation and recycling of wool/polyester fabric blends. Waste Management 102: 149-160.

Newman, C.; Tarp, F. 2019. Choques y decisiones de inversión agrícola. Food Policy 101810: 1-9.

Nhuchhen, D.; Afzal, M. 2017. HHV Predicting Correlations for Torrefied Biomass Using Proximate and Ultimate Analyses. Bioengineering 4: 1-15.

Nino, A.; Arzola, N.; Araque, O. 2020. Experimental Study on the Mechanical Properties of Biomass Briquettes from a Mixture of Rice Husk and Pine Sawdust. Energies 13: 1-20.

Nunes, L.J.R.; Godina, R.; Matias, J.C.O.; et al. 2018. Economic and environmental benefits of using textile waste for the production of thermal energy. Journal of Cleaner Production 171: 1353-1360.

Obi, O.F. 2015. Evaluation of the effect of palm oil mill sludge on the properties of sawdust briquette. Renewable & Sustainable Energy Reviews 52: 1749-1758.

Ozturk, H.H.; Ayhan, B.; Turgut, K. 2019. An assessment of the energetic properties of fuel pellets made by agricultural wastes. Scientific Papers-Series E-Land Reclamation Earth Observation Surveying Environmental Engineering 8: 9-16.

Pandey, G. 2019. Biomass based bio-electro fuel cells based on carbon electrodes: an alternative source of renewable energy. Sn Applied Sciences 1: 1-10.

Patil, G. 2019. The possibility study of briquetting agricultural wastes for alternative energy. Indonesian Journal of Forestry Research 6: 133-139.

Pereira, F.S.G.; de Sobral, A.D.; da Silva, A.; et al. 2018. Moringa oleifera: a promising agricultural crop and of social inclusion for Brazil and semi-arid regions for the production of energetic biomass (biodiesel and briquettes). Ocl-Oilseeds and Fats Crops and Lipids 25: 1-11.

Pinheiro, D.; Caraschi, J.; Ventorim, G.; et al. 2016. Trends and challenges of brazilian pellets industry originated from agroforestry. Cerne 22: 233-240.

Piribauer, B.; Bartl, A. 2019. Textile recycling processes, state of the art and current developments: A mini review. Waste Management Research 37: 112-119.

Pratiwi, Y.; Waluyo, J.; Widyawidura, W.; et al. 2019. Development of Jackfruit Peel Waste as Biomass Energy: Case Study for Traditional Food Center in Yogyakarta. International Journal of Renewable Energy Research 9: 2128-2135.

Purohit, P.; Chaturvedi, V. 2018. Biomass pellets for power generation in India: a techno-economic evaluation. Environmental Science and Pollution Research 25: 29614-29632.

Qi, D.; Lai, W.; Roe, B. 2020. El desperdicio de alimentos disminuyó más en los hogares rurales chinos con ganado. Food policy 101893: 1-15.

Rajput, S.P.; Thorat, B. N. 2020. Recovered polyvinyl alcohol as an alternative binder for the production of metallurgical quality coke breeze briquettes. International Journal of Coal Preparation and Utilization 101080: 1-12.

Riuji, C.; Mtoro, H.; Sweeney, D.; et al. 2016. Char fuel production in developing countries – A review of urban biowaste carbonization. Renewable and Sustainable Energy Reviews 59: 1514-1530.

Robles, E.; Fernandez-Rodriguez, J.; Barbosa, A.M.; et al. 2018. Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes. Carbohydrate Polymers 183: 294-302.

Rodriguez, W.; Evangelista, A.; Sette Jr, C.; et al. 2017. Producción de briquetas con residuos de cáscara de piñón manso (Jatropha curcas) y bagazo de caña de azúcar. Bosque 38: 527-533.

Rojas, A.; Ruales-Salcedo, A.; Velasco, F. 2018a. Cinética de combustión de combustibles densificados de residuos del procesamiento de la uva isabella (Vitis labrusca L.). Revista Ingenierías Universidad de Medellín 17: 51-67.

Rojas, C.; Cea, M.; Rosas-Diaz, F.; et al. 2018b. Physical, Chemical and Mechanical Characterization of a Prototype Insulating Material Based on Eucalyptus Bark Fiber. Ieee Latin America Transactions 16: 2441-2446.

Romallosa, A.R.D.; Kraft, E. 2017. Feasibility of Biomass Briquette Production from Municipal Waste Streams by Integrating the Informal Sector in the Philippines. Resources-Basel 6: 1-19.

Rosa, P.; Sassanelli, C.; Urbinati, A.; et al. 2020. Assessing relations between Circular Economy and Industry 4.0: a systematic literature review. International Journal of Production Research 58: 1662-1687.

Sahoo, K.; Bilek, E.; Bergman, R.; et al. 2019. Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems. Applied Energy 235: 578-590.

Samadi, S.H.; Ghobadian, B.; Nosrati, M. 2020. Prediction and estimation of biomass energy from agricultural residues using air gasification technology in Iran. Renewable Energy 149: 1077-1091.

Sari, G.L.; Trihadiningrum, Y.; Ni'matuzahroh 2019. Bioremediation of Petroleum Hydrocarbons in Crude Oil Contaminated Soil from Wonocolo Public Oilfields using Aerobic Composting with Yard Waste and Rumen Residue Amendments. Journal of Sustainable Development of Energy Water and Environment Systems-Jsdewes 7: 482-492.

Sarkodie, S.A.; Adams, S.; Owusu, P.A.; et al. 2020a. Mitigating degradation and emissions in China: The role of environmental sustainability, human capital and renewable energy. Science of the Total Environment 719: 1-45.

Sarkodie, S.A.; Owusu, P.A.; Leirvik, T. 2020b. Global effect of urban sprawl, industrialization, trade and economic development on carbon dioxide emissions. Environmental Research Letters 15: 1-22.

Sawadogo, M.; Tanoh, S.; Sidibé, S.; et al. 2018. Cleaner production in Burkina Faso: Case study of fuel briquettes made from cashew industry waste. Journal of Cleaner Production 195: 1047-1056.

Sette, C.R.; da Cunha, T.Q.G.; Coneglian, A.; et al. 2020. Does the Presence of Bark in the Wood of Fast-Growing Forest Species Significantly Change the Energy Potential? Bioenergy Research 13: 222-228.

Setter, C.; Silva, F.; Assis, M.; et al. 2020. Pirólisis lenta de briquetas de cáscara de café: caracterización de las fracciones sólidas y líquidas. Fuel 261: 1-11.

Shariat Panahi, H.; Dehhaghi, M.; Ok, Y.; et al. 2020. Una revisión exhaustiva del biochar diseñado: producción, características y aplicaciones medioambientales. Journal Pre-proofs 122462: 1-98.

Shevchenko, I.K.; Razvadovskaya, Y.V.; Marchenko, A.A. 2019. Russian Textile Industry: Past and Present. Terra Economicus 17: 131-149.

Shirzad, M.; Kazemi Shariat Panahi, H.; Dashti, B.; et al. 2019. Una revisión exhaustiva sobre la generación de electricidad y los potenciales de reducción de emisiones de GEI a través de la digestión anaeróbica de los desechos agrícolas y ganaderos / mataderos en Irán. Renewable and Sustainable Energy Reviews 111: 571-594.

Soto, G.; Núñez, M. 2008. Fabricacion de pellets de carbonilla, usando aserrin de Pinus radiata (d. Don), como material aglomerante. Maderas. Ciencia y tecnología 10: 129-137.

Spirchez, C.; Lunguleasa, A.; Matei, M. 2018. Particularities of hollow-core briquettes obtained out of spruce and oak wooden waste. Maderas. Ciencia y tecnología 20: 139-152.

Stolarski, M.J.; Krzyianiak, M.; Warminski, K.; et al. 2019. Energy efficiency indices for lignocellulosic biomass production: Short rotation coppices versus grasses and other herbaceous crops. Industrial Crops and Products 135: 10-20.

Suvunnapob, S.; Ayudhya, B. I. N.; Kusuktham, B. 2015. A Study of Cotton Dust Mixed with Wood Dust for Bio-Briquette Fuel. Engineering Journal-Thailand 19: 57-70.

Teigiserova, D.; Hamelin, L.; Thomsen, M. 2020. Hacia una valorización transparente del excedente, el desperdicio y la pérdida de alimentos: definiciones aclaratorias, jerarquía del desperdicio de alimentos y papel en la economía circular. Science of the Total Environment 706: 1-50.

Titei, V.; Muntean, I.; Pasat, I.; et al. 2019. The quality of biomass and fuel pellets from Jerusalem artichoke stalks and wheat straw. Scientific Papers-Series a-Agronomy 62: 567-572.

Tomeleri, J.; Valentim, L.; da Silva, J.; et al. 2017. Caracterização Química e Energética de Epicarpo Residual do Pinhão Manso (Jatropha curcas L.) e Briquete Produzido Rev. Virtual Quim. 9: 942-952.

Turemen, M.; Demir, A.; Ozdogan, E. 2019. Recycling and importance for textile industry. Pamukkale University Journal of Engineering Sciences-Pamukkale Universitesi Muhendislik Bilimleri Dergisi 25: 805-809.

Vargas, Y.; Pérez, L. 2018. Aprovechamiento de residuos agroindustriales para el mejoramiento de la calidad del ambiente. Revista Facultad de Ciencias Básicas 14: 59-72.

Verma, N.; Kumar, V. 2020. Utilization of bottle gourd vegetable peel waste biomass in cellulase production by Trichoderma reesei and Neurospora crassa. Biomass Conversion and Biorefinery 101007: 1-10.

Wang, T.F.; Wang, Z.X.; Zhai, Y.; et al. 2019. Effect of molasses binder on the pelletization of food waste hydrochar for enhanced biofuel pellets production. Sustainable Chemistry and Pharmacy 14: 1-8.

Weiss, B.D.; Glasner, C. 2018. Evaluation of the Process Steps of Pretreatment, Pellet Production and Combustion for an Energetic Utilization of Wheat Chaff. Frontiers in Environmental Science 6: 1-10.

Westerholm, M.; Liu, T.; Schnürer, A. 2020. Estudio comparativo de la producción de biogás altamente sólido a escala industrial a partir del desperdicio de alimentos: operación del proceso y microbiología. Bioresource Technology 304: 1-31.

Wu, L.X.; Lee, S.J. 2020. A Deep Learning-Based Strategy to the Energy Management-Advice for Time-of-Use Rate of Household Electricity Consumption. Journal of Internet Technology 21: 305-311.

Yaghin, R.G. 2020. Enhancing supply chain production-marketing planning with geometric multivariate demand function (a case study of textile industry). Computers & Industrial Engineering 140: 1-38.

Yang, H.; Ciais, P.; Santoro, M.; et al. 2020. Comparison of forest above-ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observation-based estimates. Global Change Biology 101111: 1-16.

Yank, A.; Ngadi, M.; Kok, R. 2016. Physical properties of rice husk and bran briquettes under low pressure densification for rural applications. Biomass and Bioenergy 84: 22-30.

Yasin, S.; Curti, M.; Rovero, G.; et al. 2020. Spouted-Bed Gasification of Flame Retardant Textiles as a Potential Non-Conventional Biomass. Applied Sciences-Basel 10: 1-16.

Yuvaraj, A.; Karmegam, N.; Tripathi, S.; et al. 2020. Environment-friendly management of textile mill wastewater sludge using epigeic earthworms: Bioaccumulation of heavy metals and metallothionein production. Journal of Environmental Management 254: 1-10.

Zhai, Y.B.; Wang, T.F.; Zhu, Y.; et al. 2018. Production of fuel pellets via hydrothermal carbonization of food waste using molasses as a binder. Waste Management 77: 185-194.

Zhang, J.H.; Sun, G.; Liu, J.Y.; et al. 2020. Co-combustion of textile dyeing sludge with cattle manure: Assessment of thermal behavior, gaseous products, and ash characteristics. Journal of Cleaner Production 253: 1-39.



Cómo citar

Espinoza-Tellez, T., Bastías, J., Quevedo-León, R., Valencia-Aguilar, E., Aburto, H., Díaz-Guineo, D., Ibarra-Garnica, M., & Díaz-Carrasco, O. (2020). Agricultural, forestry, textile and food waste used in the manufacture of biomass briquettes: a review. Scientia Agropecuaria, 11(3), 427-437.



Artículos de Revisión