ϵ-isothermic surfaces in pseudo-Euclidean 3-space

Autores

  • Armando M. V. Corro Instituto de Matemática e Estatística, Universidade Federal de Goias, Goiania-GO, Brazil.
  • Carlos M. C. Riveros Departamento de Matemática, Universidade de Brasília, Brasília, DF, Brasil.
  • Marcelo L. Ferro Instituto de Matemática e Estatística, Universidade Federal de Goias, Goiania-GO, Brazil.

DOI:

https://doi.org/10.17268/sel.mat.2023.01.12

Palavras-chave:

Dupin surfaces, Isothermic surfaces, lines of curvature.

Resumo

In this paper, we provide a class of surfaces called ϵ-isothermic surface in the pseudo-Euclidean 3-space and we introduce the pseudo-Calapso equation. We prove that for each ϵ-isothermic surface, we can associate two solutions to the pseudo-Calapso equation. In particular, we associate solutions to the Calapso, Zoomeron and Davey-Stewartson III equations. In sequence, we classify the Dupin surfaces in pseudo-Euclidean 3-space having distinct principal curvatures and provide explicit coordinates for such surfaces.

As application of the theory, we obtain explicit solutions to the pseudo-Calapso equation and from these solutions, we provide new explicit solutions of the Zoomeron and Davey-Stewartson III equations. Moreover, we also provide explicit solutions to these equations that depend on ϵ2−holomorphic functions.

Referências

Bianchi L. Lezioni di Geometria Differenziale. Terza Edicione, Nicola Zanichelli Editore, 1927.

Berger M. Geometry II, Springer, 1987.

Berger M, Gostiaux B. Differential geometry: manifolds, curves, and surfaces, Springer, 1988.

Bobenko A, Eitner U, Kitaev A. Surfaces with harmonic inverse mean curvature and Painleve equations. Geometriae Dedicata; 1997; 68(2):187-227.

Calapso P. Sulla superficie a linee di curvatura isoterme. Rendiconti del circolo matemático di Palermo; 1903; 17:275-286.

Calapso MT, Udris¸te C. Isothermic surfaces as solutions of Calapso PDE. Balkan Journal of Geometry and Its Applications; 2008; 13(1):20-26.

Cartan E. La déformation des hypersurfaces dans l'espace conforme reel à n>= 5 dimensions, Bulletin de la Société Mathématique de France; 1917; 45:57-121.

Cecil TE, Chern SS. Dupin submanifolds in Lie sphere geometry. Differential geometry and topology, Lecture Notes in Mathematics; 1369 : 1-48, Springer, 1989.

Cecil TE, Chi Q, Jensen G. Dupin hypersurfaces with four principal curvatures II. Geometriae Dedicata; 2007; 128:55-95.

Cecil TE, Jensen G. Dupin hypersurfaces with three principal curvatures. Inventiones Mathematicae; 1998; 132:121-178.

Cecil TE, Jensen G. Dupin hypersurfaces with four principal curvatures. Geometriae Dedicata; 2000; 79:1-49.

Cecil TE, Ryan PJ. Conformal geometry and the cyclides of Dupin. Canadian Journal Mathematics; 1980; 32:767-782.

Cecil TE. Isoparametric and Dupin Hypersurfaces. Symmetry, Integrability and Geometry: Methods and Applications 2008; 62(4):1-28.

Ciéslínski J, Goldstein P, Sym A. Isothermic surfaces in E3 as solitons surfaces. Physics Letters A. 1995; 205:37-43.

Ciéslínski J. The Darboux-Bianchi Transformation for isothermic surfaces, Classical results the solitons approach. Differential Geometry and its Applications; 1997; 7: 1-28.

Changyan Shi, Heming Fu, Chengfa Wu. Soliton solutions to the reverse-time nonlocal Davey-Stewartson III equation. Wave Motion; 2021; 104:102744.

Corro AMV, Ferreira WP, Tenenblat K. On Ribaucour transformations for hypersurfaces, Matemática Contemporânea; 1999; 17:137-160.

Corro, AMV, Fernandes KV, Riveros CMC. Isothermic surfaces and solutions of the Calapso equation. Serdica Mathematica J. 2018; 44:341-364.

Corro AV, Ferro ML, Rodrigues LA. K-isothermic Hypersurfaces. Nexus Mathematicae 2020; 3:1-20.

Christoffel E. Ueber einige allgemeine Eigenschaften der Minimumsflächen. Crelle's Journal; 1867; 67:218-228.

Darboux G. Sur les surfaces isothermiques. Comptes Rendus de lÁcadémie des Sciencies Paris; 1899; 128:1299-1305.

Darboux G. Leçons sur la théorie des surfaces. Chelsea Publishing Company, 1972.

Davey A, Stewartson K. On Three-dimensional Packets of Surface Waves. Proceedings of the Royal Society London A. 1974; 338:101-110.

Ferro ML, Rodrigues LA, Tenenblat K. On a class of Dupin hypersurfaces in R5 with nonconstant Lie curvature. Geometriae Dedicata; 2013; 67:01-26.

Ferro ML, Rodrigues LA, Tenenblat K. On Dupin Hypersurfaces in R5 Parametrized by Lines of Curvature. Results in Mathematics 2016; 70:499-531.

Heming Fu, Chenzhen Ruan, Weiying Hu. Soliton solutions to the nonlocal Davey-Stewartson III equation. Modern Physics Letters B. 2020; 2150026.

Magid M, Dussan MP, Chaves RMB. Björling problem for timelike surfaces in the Lorentz Minkowski space. Journal of Mathematical Analysis and Applications 2011; 377:481-494.

Miyaoka R. Compact Dupin hypersurfaces with three principal curvatures. Mathematische Zeitschrift; 1984; 187:433-452.

Pinkall U. Dupinsche Hyperflachen in E4. Manuscripta Mathematica; 1985; 51:89-119.

Pinkall U. Dupin hypersurfaces. Mathematische Annalen 1985; 270:427-440.

Riveros CMC. Dupin Hypersurface with four principal curvatures in R5 with principal coordinates. Revista Matemática Complutense; 2010; 23:341-354.

Riveros CMC, Tenenblat K. Dupin hypersurfaces in R5. Canadian Journal of Mathematics; 2005; 57:1291-1313.

Riveros CMC, Rodrigues LA, Tenenblat K. On Dupin hypersurfaces with constant Moebius curvature. Pacific Journal of Mathematics; 2008; 236:89-103.

Rodrigues LA, Tenenblat K. Characterization of Moebius isoparametric hypersurfaces of the sphere. Monatshefte fur Mathematik 2009; 158:321-327.

Rogers R, Schief WK. Bäcklund and Darboux transformations. Cambridge University Press, 2002.

Song YP. Laguerre isothermic in R3 and their Darboux transformation. Science China Mathematics. 2013; 56(1):67-78.

Stolz S. Multiplicities of Dupin hypersurfaces, Inventiones Mathematicae 1999; 138:253-279.

Sym A. Soliton Surfaces. Lettere al Nuovo Cimento. 1982; 33(12):394-400.

Thorbergsson G. Dupin hypersurfaces. Bulletin London Mathematical Society ; 1983; 15:493-498.

Weingarten J. Ueber die Differentialgleichungen der Ober flachen, welche durchibre Krümmungslinien in unendlich kleine Quadrate getheilt werden können. (Sitzugsberichte der K. P. Akademie der Wissenschaften zu Berlin, t. II, p. 1163, 1883).

Downloads

Publicado

2023-07-26

Como Citar

V. Corro, A. M., C. Riveros, C. M., & Ferro, M. L. (2023). ϵ-isothermic surfaces in pseudo-Euclidean 3-space. Selecciones Matemáticas, 10(01), 129 - 146. https://doi.org/10.17268/sel.mat.2023.01.12

Edição

Seção

Articles

Artigos mais lidos pelo mesmo(s) autor(es)