Congruence of geodesic spheres in H3 and S3

Authors

  • Edwin O. S. Reyes Centro das Ciencias Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, 47808-021 Barreiras-BA, Brazil
  • Carlos M. C. Riveros Departamento de Matemática, Universidade de Brasília, 70910-900, Brasília-DF, Brazil

DOI:

https://doi.org/10.17268/sel.mat.2018.02.08

Keywords:

Surfaces of the spherical type, lines of curvature, Hyperbolic space, congruence of geodesic spheres

Abstract

In [2], was obtained a characterization of the surfaces in R3 which are envelopes of a sphere congruence in R3, in which the other envelope is in R2. In this paper, we characterize the surfaces of H3 and S3 which are envelopes of a congruence of geodesic spheres in H3 and S3, respectively, in which the other envelope is contained in H2 H3
and S2 S3. We show that this characterization allows locally to obtain a parameterization of the surfaces contained in H3 and S3, this characterization extends the result obtained in [2]. Moreover, we provide sufficient conditions for these surfaces to be locally associated by a transformation of Ribaucour. Also, we present families of surfaces parameterized by lines of curvature in H3 and S3, which depend on a function of two variables which is solution of a differential equation. Finally, we characterize the surfaces of the spherical type in H3 and S3, as the surfaces where its radius function is the solution of the Helmholtz equation.

 

References

Blaschke, W. Über die geometrie von Laguerre: I. grundformeln der flächentheorie, Abh. Math. Sem. Univ. Hamburg., 1924; 3: 176 - 194.

Corro, A. V. Generalized Weingarten surfaces of bryant type in hyperbolic 3-space, Matemática Comtemporânea, 2006; 30: 71 - 89.

Li, T. Z. Laguerre geometry of surfaces in R3, Acta Mathematica Sinica, 2005; 21(6): 1525 - 1534.

Machado, C. D. F. Hipersuperfícies Weingarten de tipo esférico, Tese de doutorado, Universidade de Brasília, 2018.

Pottmann, H., Grohs P. and Mitra, N. J. Laguerre minimal surfaces, isotropic geometry and linear elasticity, Advances in computational mathematics, 2009; 31(4): 391 - 419.

Sarkar, T. K., Chung, Y. S. and Palma, M. S. Solution of the general Helmholtz equation starting from Laplace’s equation, Applied Computational Electromagnetics Society Journal, 2002; 17(3): 187 - 197.

Tenenblat, K. and Wang, Q. Ribaucour transformations for hypersurfaces in space forms, Annals of Global Analysis and Geometry, 2006; 29(2): 157 - 185.

Published

2018-12-30

How to Cite

S. Reyes, E. O., & C. Riveros, C. M. (2018). Congruence of geodesic spheres in H3 and S3. Selecciones Matemáticas, 5(02), 212-229. https://doi.org/10.17268/sel.mat.2018.02.08