Graph-type biharmonic surfaces in R3

Authors

DOI:

https://doi.org/10.17268/sel.mat.2020.01.08

Keywords:

Biharmonic surfaces, Harmonic surfaces, Gaussian curvature

Abstract

In this work, we study biharmonic surfaces that are parameterized by biharmonic coordinate functions. We study a class of biharmonic surfaces called graph-type biharmonic surfaces. Also, we define a class of surfaces associated to two harmonic functions (FH2A-surfaces), these surfaces satisfy a relation between the Gaussian curvature, the projection of the Gauss map on a fixed plane and two harmonic functions. We show that a particular class of graph-type biharmonic surfaces are FH2A-surfaces. Finally, we classify the FH2A-surfaces of rotation.

Author Biography

Carlos M. C. Riveros, Departamento de Matemática, Universidade de Brasília, 70910-900, Brasília-DF, Brazil

References

Klotz T. Surfaces Harmonically Immersed in E3. Pacific Journal of Mathematics. 1967; 21(1): 79-87.

Riveros C, Corro A, Barbosa S. Superficies armónicas de tipo gráfico. Selecciones Matemáticas. 2016; 03(01):1-7.

Riveros C, Corro A. Laguerre Type Surfaces. Nexus Mathematicae. 2019; 1:16-29.

Published

2020-07-25

How to Cite

C. Riveros, C. M., V. Corro, A. M., & P. de Araújo, R. (2020). Graph-type biharmonic surfaces in R3. Selecciones Matemáticas, 7(01), 97-107. https://doi.org/10.17268/sel.mat.2020.01.08

Most read articles by the same author(s)