Hypersurfaces of the spherical type in Euclidean spaces

Authors

  • Carlos M. C. Riveros Departamento de Matemática, Universidade de Brasília, 70910-900, Brasília-DF, Brazil.
  • Cid D. F. Machado FacUnicamps, CEP 74535-280, Goiania-GO, Brazil.

DOI:

https://doi.org/10.17268/sel.mat.2021.01.08

Keywords:

Weingarten hypersurfaces of the spherical type, Laguerre minimal surfaces, biharmonic map, rth mean curvature

Abstract

In this paper we study a class of oriented hypersurfaces in Euclidean space, namely, the hypersurfaces of the spherical type, this class of hypersurfaces includes the surfaces of the spherical type (Laguerre minimal surfaces) studied in [8]. We show that for n = 2, the classes of surfaces of the spherical type and the Weingarten surfaces of the spherical type coincide, more for larger dimensions this is not true and we give explicit examples. We also introduced a class of hypersurfaces associated to a biharmonic map and we show that the hypersurfaces of the spherical type are associated to a biharmonic map. Moreover, we classify the hypersurfaces of the spherical type of rotation.

References

Blaschke W. Über die geometrie von Laguerre: I. grundformeln der flächentheorie, Abh. Math. Sem. Univ. Hamburg. 1924; 3:176-194.

Blaschke W. Über die geometrie von Laguerre: II. flächentheorie in ebenenkoordinaten, Abh. Math. Sem. Univ. Hamburg. 1924;

:195-212.

Blaschke W. Über die geometrie von Laguerre: III. beiträge zur flächentheorie, Abh. Math. Sem. Univ. Hamburg. 1925; 4:1-12.

Blaschke W. Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. B. 3, bearbeitet von G. Thomsen, J. Springer, Berlin, 1929.

Corro AV. Generalized Weingarten surfaces of bryant type in hyperbolic 3-space. Matemática Comtemporanea. 2006; 30:71-89.

Corro AV, Dias D, Riveros CMC. Hypersurfaces of the spherical type degenerated. Selecciones Matemáticas. 2020; 7(2):214-221.

Gálvez JA. Martínez, A., Milán, F. Complete linear Weingarten surfaces of bryant type. a plateau problem at infinity. Trans. Amer. Math. Soc. 2004; 356:3405-3428.

Grohs P, Mitra NJ, Pottmann H. Laguerre minimal surfaces, isotropic geometry and linear elasticity. Adv. Comput. Math. 2009;

(4):391-419.

Machado CDF. Hipersuperfícies Weingarten de tipo esférico, PhD thesis, Universidade de Brasília, 2018.

Machado CDF, Riveros CMC. Weingarten hypersurfaces of the spherical type in Euclidean spaces. Comment. Math. Univ. Carolin. 2020; 61(2):213-236.

Muhanna Y, Ali RM. Biharmonic maps and Laguerre minimal surfaces. Abstract and Applied Analysis. 2013; Art. ID 843156, 9 pages.

Reyes EOS, Riveros CMC. Weingarten hypersurfaces of the spherical type in space forms. Serdica Math. J. 2019; 45:259-288.

Downloads

Published

2021-07-29

How to Cite

C. Riveros, C. M., & F. Machado, C. D. (2021). Hypersurfaces of the spherical type in Euclidean spaces. Selecciones Matemáticas, 8(01), 83 - 92. https://doi.org/10.17268/sel.mat.2021.01.08