New method for determining sensory shelf life using fuzzy logic: canned marinated artichoke hearts (Cynara scolymus L.) case
DOI:
https://doi.org/10.17268/sci.agropecu.2015.02.02Keywords:
Modeling, fuzzy logic, sensory preference, sensory acceptability, artichokeAbstract
The sensory preference (sp) and shelf life of sensory acceptability (SLSA) of canned artichoke hearts were modeled using fuzzy logic (FL) and accelerated testing. The artichoke hearts were marinated in oil of sacha inchi (Plukenetia volubilis), soybean (Glycine max) and olive (Olea europea); and evaluated using a Ranking test with a semi-trained panel, to identify the best preference both for flavor (f) and limpidity (l). We evaluated a global sp through intersection (AND) and union (OR) fuzzy operations of f and l, using functions of triangular membership with the Mamdani method for defuzzificacion through 25 linguistic rules. The intersection showed the best modeling performance, with the highest sp value at 3.30 for the treatment with sacha inchi (50%), olive (25%) and soybean (25%) (p << 0.05) oil, which was subjected to accelerated testing at 37 °C, 49 °C, 55 °C and evaluated according to their sensory acceptability (SA) through an unstructured scale test in terms of f and l. The SLSA was determined using accelerated testing with FL through intersection fuzzy operation of f and l, triangular membership functions for f and l, and also 25 linguistic rules. A SLSA at 20 ºC was determined for a "high" SA of 296 days, and 569 days for a SA between "high and beginning of medium SA". Both values were lower than the 892 days’ time determined by accelerated testing when evaluating the peroxide index in canned products.References
Abdullah, L.; Ahmad, N. 2011. Chocolate cakes preference using ranking fuzzy numbers. Journal of Quality Measurement and Analysis 7: 65-73.
Amelia, L; Wahab, D.A.; Hassan, A. 2009. Modelling of palm oil production using fuzzy expert system. Expert Systems with Applications 36: 8735-8749.
Ávila-de Hernández, R.; González-Torrivilla, C. 2011. La evaluación sensorial de bebidas a base de fruta: una aproximación difusa. Universidad, Ciencia y Tecnología 15:171-182.
Cavalcanti, M.; da Silva, F.; Cavalcanti, J.; Florentino, E.; Florêncio, I.; Moreira, R. 2013. Aplicação da lógica fuzzy na análise sensorial de pão de forma enriquecido. Revista Brasileira de Engenharia Agrícola e Ambiental 17: 208-215.
Espinilla, M.; Martínez, L.; Pérez, L.G.; Liu, J. 2008. Modelo de Evaluación Sensorial con Información Lingüística Multigranular para el Aceite de Oliva. XIV Congreso Español sobre Tecnologías y Lógica fuzzy. Pp. 249-255.
Folorunso, O.; Ajayi, Y.; Shittu, T. 2009. Fuzzy-rule-based approach for modeling sensory acceptabitity of food products. Data Science Journal 8: 70-77.
Grandés, G. 2008. Evaluación sensorial y fisicoquímica de néctares mixtos de frutas a diferentes proporciones. Universidad de Piura. Disponible en: http://pirhua.udep.edu.pe/bitstream/handle/123456789/1553/ING_464.pdf?sequence=1
İnan, Ö; Arslan, D.; Taşdemir, Ş; Özcan, M. 2011. Application of fuzzy expert system approach on prediction of some quality characteristics of grape juice concentrate (Pekmez) after different heat treatments. J Food Sci Technol. 48: 423-431.
Jaya, S.; Das H. 2003. Sensory evaluation of mango drinks using fuzzy logic. J. Sensory Studies 18: 163-176.
Lanzillotti, R.S.; Lanzillotti, H.S. 1999. Análise sensorial sob o enfoque da decisão fuzzy. Rev. Nutr., Campinas, 122: 145-157.
Lazim, M.A.; Suriani, M. 2009. Sensory evaluation of the selected coffee products using fuzzy approach. World Academy of Science, Engineering and TechnologyTechnol 50: 717-720.
Martínez, L. 2007. Sensory evaluation based on linguistic decision analysis. Internat. J. Approx. Reason. 44: 148–164.
Mohammadi, T.; Salehi, F.; Razavi, S. 2011. Sensory Acceptability Modeling of Pistachio Green Hull’s Marmalade Using Fuzzy Approach. International Journal of Nuts and Related Sciences. 2: 48-55.
Montgomery, D.C.; Runger, G.C. 2012. Probabilidad y estadística aplicadas a la ingeniería. Edit. Limusa S. A. México. D. F. pp. 817.
Mukhopadhyay, S.; Majumdar, G.C.; Goswami, T.K.; Mishra, H.N. 2013. Fuzzy logic (similarity analysis) approach for sensory evaluation of chhana podo. LWT - Food Science and Technology 53: 204-210.
Rojas, C.; Arteaga, H.; Barraza, G.; Mendez, E.; Miano, C. 2011. Estimación de la vida útil de corazones de alcachofa (Cynara scolymus L.) marinados en conserva y el contenido de omega 3 y omega 6. Scientia Agropecuaria 1: 207-211.
Routray, W.; Mishra, H.N. 2012. Sensory evaluation of different drinks formulated from dahi (indian yogurt) powder using fuzzy logic. Journal of Food Processing and Preservation 36: 1-10.
Singh, K.P.; Mishra, A.; Mishra, H.N. 2012. Fuzzy analysis of sensory attributes of bread prepared from milletbased composite flours. LWT - Food Science and Technology 48: 276-282.
Wittig de Penna, E. 2001. Evaluación Sensorial. Una metodología actual para tecnología de alimentos. Biblioteca Digital de la Universidad de Chile. Disponible en: http://mazinger.sisib.uchile.cl/repositorio/lb/ciencias_quimicas_y_farmaceuticas/wittinge01/index.html
Zadeh, L.A. 1965. Fuzzy Sets. Information and Control 8: 338-353.
Zolfaghari, Z.S.; Mohebbi, M.; Najariyan, M. 2014. Application of fuzzy linear regression method for sensory evaluation of fried donut. Applied Soft Computing 22: 417-423
Received: 15/11/14
Accepted: 05/04/15
Corresponding author: E-mail: vvasquez@unitru.edu.pe (Víctor Vásquez-Villalobos).
Published
How to Cite
Issue
Section
License
The authors who publish in this journal accept the following conditions:
a. The authors retain the copyright and assign to the magazine the right of the first publication, with the work registered with the Creative Commons attribution license, which allows third parties to use the published information whenever they mention the authorship of the work and the First publication in this journal.
b. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work Was first published in this journal.
c. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of work Published (see The Effect of Open Access).