Optimization of maca (Lepidium meyenii) glucosinolates extraction by genetic algorithms and response surface

Authors

  • Víctor Vásquez-Villalobos Universidad Nacional de Trujillo, Trujillo
  • Carmen Rojas-Padilla Universidad Nacional de Trujillo, Trujillo
  • Julio Rojas-Naccha Universidad Nacional de Trujillo, Trujillo
  • Orlando Hernández-Bracamonte Universidad Nacional de Trujillo, Trujillo
  • Julia Vásquez-Angulo Universidad Nacional de Trujillo, Trujillo
  • Omar Barreto-Alama Universidad Nacional de Trujillo, Trujillo

DOI:

https://doi.org/10.17268/sci.agropecu.2016.03.16

Keywords:

genetic algorithms, response surface, optimization, drying, maca (Lepidium meyenii)

Abstract

The aim this work was to compare the extraction process optimization of total glucosinolates of maca flour (Lepidium meyenii) (ETGMF) using RS for Box-Behnken (RSBB) Design with that of GA, according to x1: temperature (°C), x2: ethanol (%), x3: ratio solvent/raw material and x4: extraction time (min). TG were identified and quantified using HPLC. The variables (x1, x2, x3, x4) that influence their extraction were evaluated using a RSBB with the software Statistica and Wolfram Mathematica for the AG. From the development of the RSBB, a second order equation with R2 = 0.74794, p = 1.88248E-10 << 0.05 with 11% average absolute error was obtained; it showed the consistency of the model. It was not possible to obtain an optimal value of the ETGMF using RSBB because of the existence of two optimal zones due to the configuration of a chair surface. After 2000 iterations using GA, the maximum value of the function of 17.0986 μmol of TG/g of MF was obtained, which was reached with 69.9783 °C, 70.9540 ethanol%, 10.0488 ratio solvent/raw material in 90 min, which demonstrates the applicability of the GA.

References

A.O.A.C. Association of official Analytical Chemists International. 1990. Official Methods of Analysis. 15 ed. Arlington, USA. 1154 pp.

Ayambo, L. 2006. Optimización del proceso de extracción etanólico de Lepidium peruvianum Chacón. Tesis Facultad Farmacia y Bioquímica. Universidad Mayor de San Marcos. Lima, Perú.

Box, G.; Behnken, D. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2: 455-475.

Cabezas, C. 2002. Tecnología Química. Volumen XII. N° 2. Universidad del Oriente. Pp. 65-69.

Campos, D.; Chirinos, R.; Barreto, O.; Noratto, G.; Predereschi, R. 2013. Optimized methodology for the simultaneous extraction of glucosinolates, phenolic compounds and antioxidant capacity from maca (Lepidium meyenii). Industrial Crops and Products 49: 747-754.

Ciska, E.; Matyniak-Przybysszewka, B.; Kozlowsca, H. 2000. Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. Journal Agricultural Food Chemistry 48: 2862-2867.

Dini, A.; Migliuolo, G.; Rastrelli, L.; Saturnino, P.; Schettino, O. 1994. Chemical composition of Lepidium meyenni. Food chemistry 49(4): 347-349.

Douglas, R.; Maldonado, J.L.; Borges, R.; Colmenares, G. 2006. Aplicación de los algoritmos genéticos para estimar los parámetros en un modelo de regresión de Cox. Economía 22: 57-74.

Kliebenstein, D. J.; Kroymann, J.; Mitchell-Olds, T. 2005. The glucosinolate-myrosinase systems in an ecological and evolucionary context. Current Opinion in Plant Biology 8(3): 264-271.

Li, G.; Ammermann, U.; Quiroz, C. 2001. Glucosinolate Contents in Maca (Lepidium peruvianum Chacón) Seeds, Sprouts Mature Plants and Several Derived Commercial Products. Economic Botany 55(2): 255-262.

Lim, M.H.; Yuan, Y.; Omatu, S. 2000. Efficient genetic algorithms using simple genes exchange local search policy for the quadratic assignment problem. Comput Optim Appl. 15:249-268.

Lock, O.; Rojas, R. 2002. Química y Farmacología de Lepidium meyenni Walp. (“maca”). Revista Química 16(1-2): 25-31.

Marín-Bravo, M. 2003. Histología de la Maca Lepidium meyenni Walpers (Brassicaceae). Rev. Peru. Biol. 10(1): 101-108.

Mithen, R.; Dekker, M.; Verkerk, R.; Rabot, S.; Johnson, I. 2000. Review: The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agric. 80: 967–84.

Montgomery, D.C.; Runger, G.C. 2012. Probabilidad y Estadística Aplicadas a la Ingeniería. Edit. Limusa, S. A. de C. V. Pp. 817.

Mulabagal, V.; Tsay, 2004. Plant cell cultures – an alternative and efficient source for the production of biologically important secondary metabolites. International Journal of Applied Science and Engineerin. 2: 29-48.

Nastruzzi, C.; Cortesi, R.; Esposito, E.; Menegatti, E.; Leoni, O.; Iori, R.; Palmieri. 1996. In Vitro Cytotoxic Activity of Some Glucosinolate-Derived Products Generated by Mirosinase Hydrolisis. Journal Agrocultural Food Chemistry 44(4): 1014-1021.

Piacente, S.; Carbone, V.; Plaza, A.; Zampelli, A.; Pizza, C. 2002. Investigation of the tuber constituents of maca (Lepidium meyenni Walp). J Agric Food Chem. 50(20): 5621-5625.

Sarkar, D.; Modak, J. 2003. Optimisation of fed-batch bioreactors using genetic algorithms. Chemical Engineering Science 58: 2283 – 2296.

Singh, A.; Majumder, A.; Goyal, A. 2008. Artificial intelligence based optimization of exocellular glucansucrase production from Leuconostoc dextranicum NRRL B-1146. Bioresour Technol. 99: 8201-8206.

Smith, T.; Lund, E.; Johnson, I.; 1998. Inhibition of dimethylhydrazine-induced aberrant crypt foci and induction of apoptosis in rat colon following oral administration of the glucosinolate sinigrin. Carcinogenesis 19(2): 267-273.

Talalay, P.; Fahey, J.; Holtzclaw, W.; Prestera, T.; Zhang, Y. 1995. Chemoprotection against cancer by phase 2 enzime induction. Toxicol Lett. 82/83: 173-179.

Red Informática UNALM-Universidad Agraria la Molina. 2013. La Maca. Disponible en: http://www.lamolina.edu.pe/Investigacion/programa/maca/#INTRODUCCION

Verhoeven, D.; Verehagen, H.; Goldbohm, R.; van den Brandt, P.; van Poppel, G.; 1997. Review of mechanisms underlying anticarcenogenicity by brassica vegetales. Chemico-Biological Interactions 103(2): 79-129.

Verkerk, R.; Dekker, M.; Jongen, W.M.F. 2001. Post-harvest increase of indolyl glucosinolates in response to chopping and storage of Brassica vegetables. Journal of the Science of Food and Agriculture 81(9): 953-958.

Wang, J.; Wan, W. 2009. Optimization of fermentative hydrogen production process using genetic algorithm based on neural network and response surface methodology. International Journal of Hydrogen Energy 34: 255 – 261.

Wattenberg, L. 1981. Inhibition of Carcinogen-Induced Neoplasia by Sodium Cyanate, tert-Butyl Isocyanate, and Benzyl Isothiocyanate Administered Subsequent to Carcinogen Exposure. Cancer Research 41: 2991-2994.

Received May 5, 2016.

Accepted July 19, 2016.

* Corresponding author

E-mail: vvasquez@unitru.edu.pe (V. Vásquez-Villalobos).

Published

2016-09-13

How to Cite

Vásquez-Villalobos, V., Rojas-Padilla, C., Rojas-Naccha, J., Hernández-Bracamonte, O., Vásquez-Angulo, J., & Barreto-Alama, O. (2016). Optimization of maca (Lepidium meyenii) glucosinolates extraction by genetic algorithms and response surface. Scientia Agropecuaria, 7, 275-284. https://doi.org/10.17268/sci.agropecu.2016.03.16

Issue

Section

Original Articles

Most read articles by the same author(s)