Flotación de minerales de estaño: Una revisión sistemática de mineralogía, depósitos y reactivos en operaciones industriales

Autores/as

  • José Luis Matos Vargas Universidad Nacional del Centro del Perú

DOI:

https://doi.org/10.17268/jamm.2025.005

Palabras clave:

Estaño, casiterita, flotación

Resumen

El objetivo de esta investigación fue analizar sistemáticamente la composición de los minerales de estaño, conocer sus depósitos, identificar los colectores necesarios para la flotación y revisar los procesos de flotación empleados por empresas mineras. La metodología utilizada consistió en una búsqueda sistemática de información relacionada con la flotación de minerales de estaño. Los resultados mostraron que la casiterita (SnO₂) y la estannita (CuS-FeS-SnS₂) son los minerales esenciales. La clasificación de los depósitos de estaño se basa en tres grupos: depósitos diseminados, minerales de grano medio-grueso y minerales de estaño de grano grueso. Los colectores necesarios para la flotación de minerales de estaño son ácido arsénico, ácido fosfónico y ácido dicarboxílico. En el proceso de flotación de la mina Minsur se emplean reactivos depresores y colectores; algunos de ellos son el sulfato de cobre (CuSO₄) y el xantato de amilo. En conclusión, es esencial conocer el proceso de flotación del mineral de estaño debido a la gran demanda de este metal.

Referencias

[1] Angadi SI, Sreenivas T, Ho-Seok Jeon, Sang-Ho Baek, Mishra BK. A review of cassiterite beneficiation fundamentals and plant practices. Minerals Engineering. 2015 January; 70: 178–200.

[2] Philippe LVS, Lyon SB, Sammon C, Yarwood J. Validation of electrochemical impedance measurements for water sorption into epoxy coatings using gravimetry and infra-red spectroscopy. Corrosion Science. 2008 March; 50(3): 887–896.

[3] Chander S. A brief review of pulp potentials in sulfide flotation. International Journal of Mineral Processing. 2003 September 29; 72(1–4): 141–150.

[4] Williams EF, Woodberry NT, Dixon JK. Purification and surface tension properties of alkyl sodium sulfosuccinates. Journal of Colloid Science. 1957 October; 12(5): 452–459.

[5] Charlotte M, Berchel M, Couthon H, Jaffrés P. Phosphonic acid: preparation and applications. Journal of Organic Chemistry. 2017; 13: 2186–2213.

[6] Chai L, Yue M, Yang J, Wang Q, Li Q, Liu H. Formation of tooeleite and the role of direct removal of As(III) from high-arsenic acid wastewater. Journal of Hazardous Materials. 2016 December 15; 320: 620–627.

[7] Pryor EJ, Vrobel SA. Studies in Cassiterite Flotation. Bulletin of the Institution of Mining and Metallurgy. 1951; 532: 201.

[8] Pijarino F. Hydrothermal Mineral Deposits. Springer-Verlag; 2008.

[9] Sibson R, Rober F, Poulsen H. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. 1988 June 01; 16(6).

[10] Simon A, Ripley E. The Role of Magmatic Sulfur in the Formation of Ore Deposits. Reviews in Mineralogy and Geochemistry. 2011 January 11.

[11] Mitchell Anh K, Nguyen V. Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation. Advances in Colloid and Interface Science. 2005 June 30; 227–237.

[12] Miller AJD, Li C, Davidtz F, Vosb. A review of pyrrhotite flotation chemistry in the processing of PGM ores. Minerals Engineering. 2005 July 8; 18(8): 855–865.

[13] McKibben MA, Tallant JA, del Angel K. Kinetics of inorganic arsenopyrite oxidation in acidic aqueous solutions. Applied Geochemistry. 2008 February 28; 23(2): 121–135.

[14] Ran Ang D, Khan U, Tsujii N, Takai K, Nakamura R, Mori T. Thermoelectricity generation and electron–magnon scattering in a natural chalcopyrite mineral from a deep-sea hydrothermal vent. Angewandte Chemie. 2015; 127(44).

[15] Lei X, Wang J, Shi C, Huang J, Zhang H, Liu Q, et al. Probing surface interactions of electrochemically active galena mineral surface using atomic force microscopy. The Journal of Physical Chemistry C. 2016; 22433–22442.

[16] Dingwell D. Shear viscosities of ferrosilicate liquids. American Mineralogist. 1989; 1038–1044.

[17] Hawthorne FC, Henry DJ. Classification of the minerals of the tourmaline group. European Journal of Mineralogy. 1999; 201–215.

[18] Polkin SI. Flotation of Rare Metal and Tin Ores. Gosgorte-khizdat; 1971.

[19] Krasnukhina AV, Lepetov SF, Vakhromova SP. Concentration of Tin Ores. Report of Scientific Research Institute on Tin; 1971.

[20] Streltsin VG, Ponovich MN. Proceedings of Symposium on Flotation of Cassiterite. Novosibirsk; 1973.

[21] Bulatovic SM. New Collector Mixture for Tin Flotation – The Recovery of Tin from San Rafael Gravity Tailings. Report of Investigation; 2005.

[22] Zhu J, Zhu Y. The effect of ions in water on the benzyl arsonic acid flotation of cassiterite slimes. Journal of Central-South Institute of Mining and Metallurgy. 1985; 1(1): 29–37.

[23] He JZ, Liu MX. Innovation in separation technology for fine gravity semi-products. Mineral Processing and Extractive Metallurgy. 1984; 553–562.

[24] Cuyper J, Sales A. Flotation of cassiterite. Proceedings of International Tin Symposium. 1977; 175–182.

[25] Kirchberg H, Wottgen L. The effect of phosphorus and antimony surfactants on cassiterite flotation. Chemistry, Physics and Application of Surface Active Substances. 1976; 693–704.

[26] Arbiter N. Beneficiation of cassiterite ore by froth flotation. British Patent. 1968; 110–643.

[27] Polkin SJ, Korzova RV. The flotation of cassiterite and tourmaline by means of DNS and high molecular tannins. Tsvetnie Metally. 13(10): 10–13.

[28] Strebzyn VG. Selective flotation of cassiterite in the presence of iron-bearing minerals. Obogasthenie Rud. 1968; (13): 3–6.

[29] Topfer G, Gruner U, Menzer D. The behaviour of gangue minerals in the flotation of cassiterite. Symposium for Tin Beneficiation. 1971; 277–280.

[30] Ali M, Ahmed H, Ahmed H, Hefni M. Pyrophyllite: An economic mineral for different industrial applications. Applied Sciences. 2021.

[31] Bru K, Machado M. Pilot-scale investigation of two electric pulse fragmentation (EPF) approaches for the mineral processing of a low-grade cassiterite schist ore. Minerals Engineering. 2020 May 1; 150.

[32] Kovalenker V. Kuramite, Cu₃SnS₄, a new mineral of the stannite group. International Geology Review. 2010; 365–370.

[33] Robert E, Landon, Mogilnor A. Colusite, a new mineral of the sphalerite group. American Mineralogist. 1933; 528–533.

[34] Wang X, Li H, Liu X, Tang Y, Ni C. Advances in flotation reagents for cassiterite separation: challenges and sustainable solutions. Molecules. 2025; 30(11): 2380.

[35] Jin S, Zhang P, Ou L, Zhang Y, Chen J. Flotation of cassiterite using alkyl hydroxamates with different carbon chain lengths: a theoretical and experimental study. Minerals Engineering. 2021; 170.

[36] Jin S, Shi Q, Ou L. Hydrophobic flocculation of fine cassiterite using alkyl hydroxamic acids with different carbon chain lengths as collectors. Molecules. 2023; 28(9): 3911.

[37] Zhao G, Zhou X, Li F, Fu G, Shang X. Flotation performance of anisic hydroxamic acid as new collector for tungsten and tin minerals. Journal of Central South University. 2022; 29(11): 3645–3655.

[38] Luke L, Chang, Brice W. The herzenbergite–teallite series. Mineralogical Magazine. 2013; 186–189.

[39] Zhai D, Bindi L, Panagiostis L, Jiajun S, Tombros, Li K. Discovery of Se-rich canfieldite, Ag₈Sn(S,Se)₆, from the Shuangjianzishan Ag-Pb-Zn deposit, NE China. Mineralogical Magazine. 2019; 83(3): 419–426.

[40] Jaszczak A, Rumsey S, Bindi S, Hackney M, Wise C, Stanley, et al. Merelaniite: a new molybdenum-essential member of the cylindrite group from the Merelani Tanzanite Deposit, Tanzania. Minerals. 2016; 6(4).

[41] Casati P, Nicoletti M, Petrucciani C. Eta (K/AR) di intrusioni profiritiche e leucogabbriche nelle prealpi bergamasche. Pascal Francis. 1976; 32(1): 215–226.

[42] Han G, Chen S, Su S, Huang Y, Liu B, Sun H. A review and perspective on micro and nanobubbles: what they are and why they matter. Minerals Engineering. 2022; 189.

[43] Ren L, Zhang Z, Zeng W, Zhang Y. Adhesion between nanobubbles and fine cassiterite particles. International Journal of Mining Science and Technology. 2023; 33(4): 503–509.

Publicado

2025-12-28

Cómo citar

Matos Vargas, J. L. (2025). Flotación de minerales de estaño: Una revisión sistemática de mineralogía, depósitos y reactivos en operaciones industriales. Journal of Advanced Mining Modeling, 1(2), 73-90. https://doi.org/10.17268/jamm.2025.005

Número

Sección

Artículos de Revisión