Uso de refugio por las presas: su impacto en la dinámica del modelo de Lotka-Volterra
DOI:
https://doi.org/10.17268/sel.mat.2022.02.06Palabras clave:
Modelo depredador-presa, refugio, estabilidad, bifurcaciones, ciclos límites, curvas separatricesResumen
En diversos trabajos anteriores se han modificado diferentes modelos de depredacion considerando el uso de refugio de presas, para lo cual se efectua un analisis parcial de su dinamica.
En algunos de ellos se afirma que el uso de refugio tiene un efecto estabilizador en la interaccion depredador-presa. Uno de los propositos de este trabajo es mostrar que en algunos de estos nuevos sis
temas, derivados del modelo de Lotka-Volterra, no se cumple tal afirmacion.
Varios de los modelos estudiados tienen mas de un punto de equilibrio positivo, y el comportamiento de las soluciones son altamente dependientes de las condiciones iniciales
Citas
Almanza-Vásquez E. Dinámicas de modelos de depredación, considerado una función con saturación para el uso de refugio por parte de las presas, Tesis Maestría en Biomatemáticas, Facultad de Ciencias Básicas y Tecnologías, Universidad del Quindío, Armenia, Colombia 2007.
Almanza-Vásquez E, González-Olivares E, González-Yañez B. Dynamics of Lotka-Volterra model considering satured refuge for prey, In R. Mondaini (Ed.) BIOMAT 2011 International Symposium on Mathematical and Computational Biology, World Scientific Co. Pte. Ltd. 2012; 62-72.
Bazykin AD. Nonlinear Dynamics of interacting populations, World Scientific Publishing Co. Pte. Ltd., Singapore, 1998.
Berryman AA, Gutierrez AP, Arditi R. Credible, parsimonious and useful predator-prey models - A reply to Abrams, Gleeson, and Sarnelle, Ecology. 1995; 76(6):1980-1985.
Chen F, Chen L, Xie X. On a Leslie Gower predator prey model incorporating a prey refuge, Nonlinear Analysis: Real World Applications. 2009; 10:2905-2908.
Chen L, Chen F, Chen L Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge. Nonlinear Anal Real World Appl. 2010; 11(1):246-252.
Clark CW. Mathematical Bioeconomic. The optimal management of renewable resources, John Wiley and Sons, 1990.
Epstein JM. Nonlinear Dynamics, Mathematical Biology, and Social Sciences. Addison-Wesley Publishing Company, 1997.
Freedman HI. Deterministic Mathematical Model in Population Ecology. Marcel Dekker, 1980.
Gause GF. The Struggle for Existence, The Williams & Wilkins company, Baltimore, 1934.
Goh B-S. Management and Analysis of Biological Populations. Elsevier Scientific Publishing Company, 1980.
González-Olivares E, Ramos-Jiliberto R. Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecological Modelling, 2003; 166:135-146.
González-Olivares E, Ramos-Jiliberto R. Consequences of prey refuge use on the dynamics of some simple predator-prey models: Enhancing stability?, In R. Mondaini (ed.), Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology (BIOMAT-2003), E-Papers Serviços Editoriais Ltda., Rio de Janeiro, 2004; V. 2:75-98.
González-Olivares E, Huincahue-Arcos J. A two-patch model for the optimal management of a fishing resource considering a marine protected area, Nonlinear Analysis: Real World and Applications. 2011; 12:2489-2499.
González-Olivares E, Ramos-Jiliberto R. Comments to "The effect of prey refuge in a simple predator-prey model" [Ecol. Model. 222 (September(18)) (2011) 3453-3454], Ecological Modelling. 2012; 232:158-160.
González-Olivares E, González-Yañez B, Becerra-Klix R. Prey refuge use as a function of predator-prey encounters, Private communication, submitted (2012).
González-Olivares E, González-Yañez B, Becerra-Klix R, Ramos-Jiliberto R. Multiple stable states in a model based on predator-induced defenses, Ecological Complexity. 2017; 32:111-120.
Haque M, Sabiar Rahman M, Venturino E, Li B-L. Effect of a functional response-dependent prey refuge in a predator-prey model, Ecological Complexity. 2014; 20:248-256.
Harrison GW. Global stability of predator-prey interactions, Journal of Mathematical Biology. 1979; 8:139-171.
Ma Z, Li W, Zhao Y, Wang W, Zhang H, Li Z. Effects of prey refuges on a predator-prey model with a class of functional responses: the role of refuges, Mathematical Biosciences. 2009; 218(2):73-79.
Ma Z, Li W, Wang S. The effect of prey refuge in a simple predator-prey model, Ecological Modelling. 2011; 222:3453-3454.
May RM. Stability and complexity in model ecosystems. 2nd edition: Princeton University Press, 2001.
Maynard Smith J. Models in Ecology. CambridgeUniversity Press, 1974.
McNair JM. The effects of refuges on predator-prey interactions: a reconsideration, Theoretical Populations Biology. 1986; 29:38-63.
Molla H, Sabiar Rahman M, Sarwardi S. Dynamics of a predator-prey model with Holling type II functional response Incorporating a prey refuge depending on both the species, International Journal of Nonlinear Sciences and Numerical Simulation. 2019; 20(1):89-104.
Ramos-Jiliberto R, González-Olivares E. Relating behavior to population dynamics: a predator-prey metaphysiological model emphasizing zooplankton diel vertical migration as an inducible response, Ecological Modelling. 2000; 127:221-233.
Ruxton GD. Short term refuge use and stability of predator-prey models, Theoretical Population Biology. 1995; 47:1-17.
Sih A. Prey refuges and predator-prey stability, Theoretical Populations Biology. 1987; 31:1-12.
Taylor RJ. Predation. Chapman and Hall, 1984.
Turchin P. Complex population dynamics. A theoretical/empirical synthesis. Mongraphs in Population Biology 35 Princeton University Press, 2003.
Volterra V. Variazioni e fluttuazioni del numero de individui in specie animali conviventi. Memorie della R. Accademia dei Lincei, S.VI, IT. 1926; 2:31-113.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Selecciones Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative CommonsAtribución 4.0 Internacional (CC BY 4.0) , que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado(Consultar: efecto del acceso abierto).