Una clase de modelo de depredación del tipo Leslie-Gower con respuesta funcional racional no monotónica y alimento alternativo para los depredadores

Autores/as

DOI:

https://doi.org/10.17268/sel.mat.2019.02.07

Palabras clave:

Modelo depredador-presa, respuesta funcional, bifurcación, ciclo límite, curva separatriz, estabilidad

Resumen

Las interacciones entre dos especies son básicas en el estudio de cadenas alimentarias complejas, en particular la relación entre los depredadores y sus presas.

El análisis de modelos simples, descritos por sistemas de tiempo continuo, en los cuales se incorporan algunos fenómenos ecológicos dando luces sobre esta interesante interrelación.

En este trabajo, se analiza un modelo de depredador-presa del tipo Leslie-Gower, descrito por un sistema de ecuaciones diferenciales ordinarias (EDO) considerando dos aspectos: la presa se defiende de la depredación, formando grupo de defensa, y los depredadores disponen un alimento alternativo, cuando su alimento favorito escasea. Por lo tanto, se asume una respuesta funcional racional de Holling tipo IV y una modificación de la capacidad de carga de los depredadores para describir estos fenómenos.

Determinamos las condiciones en el espacio de parámetros para la existencia de los equilibrios y la naturaleza de cada uno de ellos.

Concluimos que el parámetro que indica la existencia de alimento alternativo para depredadores tiene una gran importancia en la dinámica del modelo, porque aparecen nuevos puntos de equilibrio y curvas de separatriz en el plano de fase.

Por simulaciones numéricas comprobamos que existe un subconjunto de parámetros para los cuales hay un único punto de equilibrio positivo en el plano de fase, el cual es estable y está rodeado por dos ciclos límites originados por bifurcación de Hopf, el interior inestable y el exterior estable.

Citas

Aguilera-Moya A. and González-Olivares E. A Gause type model with a generalized class of non-monotonic functional response, In R. Mondaini (ed.), Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology, E-Papers Serviços Editoriais, Ltda., Rio de Janeiro, 2004; 2:206-217.

Aguilera-Moya A., González-Yañez B. and González-Olivares E. Existence of multiple limit cycles on a predator-prey with generalized non-monotonic functional response, In R. Mondaini (ed.), Proceedings of the Fourth Brazilian Symposium on Mathematical and Computational Biology, E-Papers Serviços Editoriais, Ltda., Rio de Janeiro, 2005; 2:196-210.

Aguirre, P., González-Olivares, E., Sáez, E. Two limit cycles in a Leslie-Gower predator-prey model with additive Allee effect, Nonlinear Analysis: Real World Applications, 2009; 10:1401-1416.

Aguirre,P., González-Olivares, E., Sáez, E. Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect, SIAM Journal on Applied Mathematics, 2009; 69(5):1244-1269.

Arancibia-Ibarra, C. and González-Olivares, E. A modified Leslie-Gower predator-prey model with hyperbolic functional response and Allee effect on prey, In R. Mondaini (Ed.) BIOMAT 2010. International Symposium on Mathematical and Computational Biology, World Scientific Co. Pte. Ltd., Singapore (2011) 146-162.

Arrowsmith, D. K. and Place,C. M. Dynamical System.Differential equations, maps and chaotic behaviour, Chapman and Hall, 1992.

Aziz-Alaoui, M. A. and Daher Okiye, M. Boundedness and global stability for a predator-prey model with modied Leslie-Gower and Holling-type II schemes, Applied Mathematics Letters, 2003; 16: 1069-1075.

Bazykin, A.D. Nonlinear Dynamics of interacting populations, World Scientific Publishing Co. Pte. Ltd., 1998.

A. A. Berryman, A.A., Gutierrez, A.P. and Arditi, R. Credible, parsimonious and useful predator-prey models - A reply to Abrams, Gleeson, and Sarnelle, Ecology, 1995; 76:1980-1985.

Cheng, K. S. Uniqueness of a limit cycle for a predator-prey system, SIAM Journal of Mathematical Analysis. 1981; 12:541-548.

Chicone, C. Ordinary differential equations with applications, Texts in Applied Mathematics, 34, Springer, 1999.

Dumortier, F., Llibre, J. and Artés, J. C. Qualitative theory of planar differential systems, Springer, 2006.

H. I. Freedman, Deterministic mathematical models in populations ecology, Marcel Dekker, Inc. New York 1980.

Freedman, H. I. and Wolkowicz, G. S. K. Predator-prey systems with group defence: The paradox of enrichment revisted. Bulletin of Mathematical Biology. 1986; 48:493-508.

Gaiko, V. A. Global Bifurcation theory and Hilbert´s sixteenth problem, Mathematics and its Applications 559, Kluwer Academic Publishers, 2003.

Gause, G. F. The Struggle for existence, Dover, 1934.

González-Olivares, E. A predator-prey model with nonmonotonic consumption function, In R. Mondaini (Ed.) Proceedings of the Second Brazilian Symposium on Mathematical and Computational Biology, E-papers Serviços Editoriais Ltda. Río de Janeiro, (2003) 23-39.

González-Olivares, E., Mena-Lorca, J., Rojas-Palma, A. and Flores, J. D. Dynamical complexities in the Leslie-Gower predator-prey model considering a simple form to the Allee effect on prey, Applied Mathematical Modelling, 2011; 35:366-381.

González-Olivares, E. and Rojas-Palma, A. Allee effect in Gause type predator-prey models: Existence of multiple attractors, limit cycles and separatrix curves. A brief review, Mathematical Modelling of Natural Phenomena. 2013; 8(6):143-164.

González-Olivares, E., Tintinago-Ruiz, P. and Rojas-Palma, A. A Leslie-Gower type predator-prey model with sigmoid funcional response, International Journal of Computer Mathematics, 2015; 93(9):1895-1909.

González-Olivares, E., Gallego-Berrío, L. M., González-Yañez, B. and Rojas-Palma,A. Consequences of weak Allee effect on prey in the May-Holling-Tanner predator-prey model, Mathematical Methods in the Applied Sciences, 2016; 39:4700-4712.

González-Olivares, E., Arancibia-Ibarra, C., Rojas-Palma, A. and González-Yañez, B. Bifurcations and multistability on the May-Holling-Tanner predation model considering alternative food for the predators, Mathematical Biosciences and Engineering, 2019; 16(5):4274-4298.

Guckenheimer J. and Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, 1983.

Hanski, I., Hentonnen, H., Korpimaki, E., Oksanen, L. and Turchin, P. Small-rodent dynamics and predation, Ecology, 2001; 82:1505-1520.

Hasík, K. On a predator-prey system of Gause type, Journal of Mathematical Biology, 1010; 60:59-74.

Holling, C. S. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly, The Canadian Entomologist, 1959; XCI:293-320.

Leslie, P. H. Some further notes on the use of matrices in population mathematics, Biometrika, 1948; 35:213-245.

Leslie, P. H., Gower, J. C. The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 1960; 47:219-234

May, R. M. Stability and complexity in model ecosystems, Princeton University Press, 1974.

Martínez-Jeraldo, N. and Aguirre, P. Allee effect acting on the prey species in a Leslie-Gower predation model, Nonlinear Analysis: Real World Applications, 2019; 45:895-917.

Monzón, P. Almost global attraction in planar systems, System and Control Letter, 2005; 54:753-758.

Perko, L. Differential equations and dynamical systems, Springer-Verlag, 1991.

Rantzer, A. A dual to Lyapunov’s stability theorem, System and Control Letter, 2001; 42:161-168.

Rojas-Palma A. and González-Olivares, E. Gause type predator-prey models with a generalized rational non-monotonic functional response, In J. Vigo-Aguiar (Ed.) Proceedings of the 14th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2014, 4:1092-1103. ISBN: 978-84-616-9216-3.

Ruan, S. and Xiao, D. Global analysis in a predator-prey system with nonmonotonic functional response, SIAM Journal on Applied. Mathematics, 2001; 61:1445-1472.

Sáez, E. González-Olivares, E. Dynamics on a Predator-prey Model, SIAM Journal of Applied Mathematics, 1999; 59(5):1867-1878.

Taylor, R. J. Predation, Chapman and Hall, 1984.

Turchin, P. Mongraphs in population biology: Vol. 35. Complex population dynamics. A theoretical/empirical synthesis, 2003.

Venturino, E. and Petrovskii, S. Spatiotemporal behavior of a prey-predator system with a group defense for prey, Ecological Complexity, 2013; 14:37-47.

Vilches, K., González-Olivares, E. and Rojas-Palma, A. Prey herd behavior modeled by a generic non-differentiable functional response, Mathematical Modelling of Natural Phenomena, 2018; 13:26.

Wolkowicz, G. S. W. Bifurcation analysis of a predator-prey system involving group defense, SIAM Journal on Applied Mathematics, 1988; 48:592-606.

Zhu, H., Campbell, S. A. andWolkowicz, G. S. K. Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM Journal on Applied Mathematics, 2002; 63:636-682.

Descargas

Publicado

2019-12-24

Cómo citar

Tintinago-Ruiz, P. C., Gallego-Berrío, L. M., & González-Olivares, E. (2019). Una clase de modelo de depredación del tipo Leslie-Gower con respuesta funcional racional no monotónica y alimento alternativo para los depredadores. Selecciones Matemáticas, 6(02), 204-216. https://doi.org/10.17268/sel.mat.2019.02.07

Artículos más leídos del mismo autor/a