Criterio de Turbulencia y Estimativas de la Ecuación de Burgers

Authors

  • Jorge Horna Mercedes
  • Jony Dionicio Vereau
  • Raúl Martinez Zocón
  • Azucena Zavaleta Quipuscoa

DOI:

https://doi.org/10.17268/sel.mat.2014.02.03

Keywords:

Ecuación de Burgers, turbulencias, estimativas

Abstract

A lo largo de la historia el estudio de turbulencia en dinámica de fluidos, no ha conseguido lograr una definición única o criterio teórico para este importante fenómeno. En este
artículo, resolveremos en una y dos dimensiones la ecuación clásica de dinámica de fluidos, la ecuación de Burgers y aplicaremos los criterios de Turbulencia hecho por Ruelle [2], Muriel [3] y Getreuer, Albano y Muriel [6]. Además daremos algunas estimativas de la
ecuación de Burgers.

References

R. Aebi. Propagation of Chaos in entropy, Kodai Math. J. Volume 19, Number 3, 308-321, (1996).

M. Basto, F. Calheiros. Dynamics in Spectral Solutions of Burgers Equation. Journal of Computational and Mathematics. Volume 205, Issue (August 2007).

H. Brézis. Análisis Funcional Alianza Editorial S.A. Madrid, 1984.

P. Calderoni, M. Pulvirenti. Propagation of Chaos for Burgers Equation, Annals of Institute Henri Poincaré, 39 No. 1 (1983), p. 85-97.

P. Constantin, C. Foias, R. Teman. Attractors Representing Turbulent Flows, Memoirs AMS; 53, 1985.

G. Da Prato, J. Zabczyk. Ergodicity for Infinite Dimensional Systems, London Mathematical Lecture Note Series (No 229) June, 1996.

I. Davies, A. Truman, H. Zhao. Stochastic Heat and Burgers Equations and Their Singularities II - Analytical Properties and Limiting Distributions, University of Wales Swanres, UK, 2004.

C. Foias, O. Manley, R. Temam. Approximate Inertial Manifolds and Effective Viscosity in Turbulent Flows, Phys. Fluids A 3(5), 1991, 898-911.

J. Fritz. Formation of Singularities in One-Dimensional NonlinearWave Propagation, Communications on Pure and Applied Mathematics, Volume XXVII, 377-405, 1974.

E. Gutkin, M. Kac. Propagation of Chaos and the Burgers Equation, Siam Journal on Applied Mathematics (ISSN 0036-1399), vol. 43, Aug. 1983. p. 971-980.

B. Goldys, B. Maslowski. Exponential Ergodicity For Stochastic Burgers and 2D Navier-Stokes Equations, Discovery Grant DP0346406, the UNSW Faculty.

A. Gottlieb. Markov Transitions and the Propagation of Chaos, Computing Sciences Directorate Lawrence Berkeley National Laboratory. December 1998.

J. Hale. Dynamics of a Scalar Parabolic Equation, Quarterly Volume 12 (3&4) 1999, pp. 239-314.

J. Hale, L. Magalhaes, W. Oliva. Dynamics in Infinite Dimensions, Applied Mathematical Sciences Volume 47 2002, Springer- Verlag. New York, Inc.

E. Hopf. The Partial Differential Equation, Comm. Pure Appl. Math. 3, pp. 201-230.

B. Jourdain. Propagation of Chaos and Poincaré Inequalities for a System of Particles Interacting Through Their Edf, The Annals of Applied Probability 2008, vol. 18, No 5, 1706-1736. Institute of Mathematical Statistics, 2008.

T. Kato. Perturbation Theory of Linear Operators, Springer-Verlag, New York, 1966.

H. Kreiss, J. Lorenz. Initial-Boundary Value Problems and the Navier-Stokes Equations, Siam 2004.

X. Lui. On Approximate Inertial Manifolds for Two and Three Dimensional Turbulent Flows, J: Math. Annals. Appl. 63, 1992, p 559-580.

R. Mikulevicias, B. Rozovskii. Stochastic Navier-Stokes-Equations, Propagation of Chaos and Statistical Moments, Center for Applied Mathematical Sciences 2001.

Published

2014-12-05

How to Cite

Horna Mercedes, J., Dionicio Vereau, J., Martinez Zocón, R., & Zavaleta Quipuscoa, A. (2014). Criterio de Turbulencia y Estimativas de la Ecuación de Burgers. Selecciones Matemáticas, 1(02). https://doi.org/10.17268/sel.mat.2014.02.03

Most read articles by the same author(s)