SYMBOLIC DYNAMICS AND SOME APPLICATIONS

Authors

  • Jorge Horna Mercedes
  • Jony Dionicio Vereau
  • Raúl Martinez Zocón
  • Azucena Zavaleta Quipuscoa
  • Yesabella Brenis Delgado

DOI:

https://doi.org/10.17268/sel.mat.2016.02.05

Keywords:

Symbolic dynamics, shift application, Markov partition, point homoclinic

Abstract

In this article we present some applications of symbolic dynamics in the field of dynamic systems by the discretization of space.

References

R. Adler & B. Weiss, Similarity of automorphisms on the torus., Mem. Amer. Math. Soc. 98, 1970.

R. Adler, A. Konheim & M. McAndrew, Topological Entropy, 114 (1965), 309-319.

R. Bowen & J. Franks., Homology for zero-dimensional basic sets, Annals of Math. 106 (1977), 37-92.

M.P. Beal & D. Perrin, Symbolic dynamics and nite automata, Handbook of Formal Languages (G. Rozemberg & A. Salomaa, eds.) vol. 2, Springer Verlag, Berlin 1997, pp. 463-505.

F. Blanchard, A. Maass & A. Nogueira. eds., Topics in Symbolic Dynamics and Aplications, Cambridge Univ. Press. Cambridge, U.K., 2000.

M. Boyle, Symbolic dynamics and matrices, Combinatorial and Graph Theoretic Problems in Linear Algebra. IMA Volumes in Math. and its Appl. (R. Brualdi et al., eds.), vol. 50, 1993, pp. 1-38.

Douglas A. Lind and Brian Marcus, An Introduction to Symbolic Dynamics and coding, Cambrigde: Cambridge University Press. 1995.

J. Hadamard, Les surfaces a courbures opposees et leur lignes geodesiques, J. Maths. Pures et Apliques 4 (1898), 27-73.

B. Kitchens, Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Chains, Springer-Verlag, Berlin, Heidelberg, 1998.

K.H. Kim & F.W. Roush, Decidability of shift equivalence, in J.W. Alexander, ed., Dynamical systems, Lecture Notes in Mathematics. Vol. 1342, Springer-Verlag, Heidelberg, 1988.

K.H. Kim & F.W. Roush, Willams's conjecture is false for irreducible subshifts, Elec. Res. Announc. Amer. Math. Soc. 3 (1997), 105-109.

M. Morse & G.A. Hedlund, Symbolic Dynamic, Amer. J. Math. 60 (1938), 815-866.

A. Manning, Axiom A dieomorphisms have rational zeta functions, Bull. London Math. Soc. 3 (1971), 215-220.

Peyam Ryan Tabrizian, KHomoclimic Orbits and chaotic beharior in classical mechanics, 2008.

B. Weiss, Subshifts of nite type and soc systems, Math. 77 (1973), 462-474.

R.F. Williams, Classication of subshifts of nite type, Annals of Math. 98 (1973), 120-153; erratum, Annals of Math. 99 (1974), 380-381.

Published

2016-12-11

How to Cite

Horna Mercedes, J., Dionicio Vereau, J., Martinez Zocón, R., Zavaleta Quipuscoa, A., & Brenis Delgado, Y. (2016). SYMBOLIC DYNAMICS AND SOME APPLICATIONS. Selecciones Matemáticas, 3(02), 101-106. https://doi.org/10.17268/sel.mat.2016.02.05

Most read articles by the same author(s)