The integral, a vision of its evolution through time III

Authors

DOI:

https://doi.org/10.17268/sel.mat.2023.02.14

Keywords:

Riemann integral, Lebesgue integral, McShane integral, C-integral, Bochner integral

Abstract

In this opportunity we present some areas of the evolution of the integral, which complement what was deal with in parts I and II. Thus we give a conceptual overview of the McShane integral, of the C-integral, of the Bochner integral, of the Lm HK integral , of the integral on manifolds and on a modern point of view of the Riemann integral.

References

Bartle RG. Return to the Riemann Integral. American Mathematical Monthly. 103,8. 1980.

Beires-Dias MM. Los espacios de Sobolev-Bocher[Internet], Santiago de Compostela, Univ. de Santiago de Compostela. 2021[consultado en mayo 2023]https://minerva.usc.es/xmlui/handle/10347/28928.

Bongiorno B. On the C-integral. Dpto Mathematics University of Palermo. Arch. 34, 90123. 2002.

Bongiorno B. On the minimal solution of the problem of primitives. J. of Mathem. Anal. and Aplic. 2000; 251.

Bongiorno B, Di Piazza L, Preiss D. A constructive minimal integral wich includes Lebesgue integrable functions and derivates. AMS. 2014; 28A15-26A39.

Brito W. Las integrales de Riemann, Lebesgue y Hernstock- Kurzweil[Internet], ULA-Venezuela; [accesado en 19 febrero 2023].Disponible en http://www.ciens.ula.ve/matematica/publicaciones/libros/por_

profesor/wilman_brito/integral2222cambio.pdf

Calderón AP, Zygmund A. Local properties of solutions of partial differential equations. Studia Math. 20. 1961.

Calderón AP. Theory of pseudo differential operators on manifolds. Lecturas. Universidad de Chicago. 1970.

Feauveau J-Ch. A generalized Riemann integral for Banach- valued functions[

Intenret]. Real Analysis Exchange. Pp 919-930.Fr. Disponible en FedersonM.

SomepecularitiesoftheHenstockandKurzweilintegralsofBanachspace-valuedfunctions

Federson M. Some pecularities of the Henstock and Kurzweil integrals of Banach space-valued functions[Intermet]. Dpto. de Matem. Univ. Sao Paulo. 1993[accessado 12 marzo 2023]. Disponible en https://sites.icmc.usp.br/federson/birkhoff3.pdf.

Fremlin DH, Mendoza J. On the integration of vector-valued functions. Illinois. J. of Mathematics. 1994; Vol 38, No 1.

Fremlin DH. The Henstock and McShane integrals of Banach space-valued functions. Illinois. J. of Mathematics. 1994; Vol 38, No 1.

Fremlin DH. The generalized McShane integral. Illinois. J. of Mathematics. 1995; Vol 39, No 1.

Gordon L. Perron’s integral for derivates in Lr. Dpt. of Math. Univ. of Illinois in Chicago. 1956.

Guoju Y, Schwabik S. The MacShane and the Pettis integrals of Banach space-valued functions definided on Rm. Illinois J. of Mathem. 2002; Vol. 46. No 4.

Hildebrant TH. Integration in abstract spaces[Internet]. Univ. Of Michigan. 1952https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwi3nMjVhZyDAxVzu5UCHd4AAYUQFnoECAsQAQ&url=https%3A%2F%2Fprojecteuclid.org%2FjournalArticle%2FDownload%3Furlid%3Dbams%252F1183517761&usg=

AOvVaw2hOKlZOaKxuksi5jXPySQ0&opi=89978449.

Kurtz D, Swartz Ch. Theories of integration. The integrals of Riemann, Lebesgue, Henstock-Kurzweil and Mcshane. World Scientific Publ. 2004.

Lewis J, Shisha O. The generalized Riemann, domined improper integrals. Journal of Approx. Theory. 38. 1983.

López R. Riemann integration via primitives for a new proof to the change of variable theorem. arXiv: 1105.5938v1. math. CA.2011.

Massarwi E, Halsted S, Musial P, King S. A Stieltjes type extension of the Lr-Perron integral. Real Analysis Exchange. 2015; Vol.40 (2): 291-308.

Musial PM, Sagher Y. The L Henstock- Kurzweil integral. Studia Mathematica. 2004; 160(1).

Ortiz A. La integral, una visión de su evolución a través del tiempo I. Selecciones Matemáticas. 2023; Vol 10(1):173-198.

Pérez T. Un análisis de las integrales de Henstock y Kurzweil en el marco de los espacios de Banach[Intenet]. Puebla: Univ. Autónoma de Puebla, 2014. Disponible en https://repositorioinstitucional.buap.mx/items/e68c3b44-6644-474b-944e-d801898b85c0.

Pettis BJ. On integration in vector spaces[Internet]. The University of Virginia. 1937. Disponible en https://www.ams.org/journals/tran/1938-044-02/S0002-9947-1938-1501970-8/

S0002-9947-1938-1501970-8.pdf

Rim D, Kim Y. The McShine integral of Banach space-valued functions. Journal of the Chungcheong Mathematical Soc. 2004; Vol 17. No 2.

Saab E. Unified integration by E.J. Mc Shane. 1983. Bulletin of the AMS. 1985; Vol. 13. No 1.

Saks S. Theory of the integral. Warszawa. 1937. Dover Publications, N.Y. 1964.

Sánchez JR. La integral de Bochner[Internet]. Thesis Maestria, Benemérita Univ. Autónoma de Puebla. Disponible en https://www.fcfm.buap.mx/assets/docs/docencia/tesis/matematicas/JairRaulSanchezMorales.pdf.

Seeley RT. Singular integrals on compact manifolds. Amer. J. of Math. 81.1959.

Strichartz RS. The Hardy space H1 on manifolds and submanifolds. Can. J. Math. 1972; Vol. XXIV. No 5.

Tandra H. A simple proof of the change of variable theorem for the Riemann integral. The Teaching of mathematics. 2015; Vol XVIII.

Thange TG, Gangane SS. Henstock- Kurzweil integral for Banach valued function. Mathematics and Statistics. 2002; 10(5).

Tikare SA, Chaudhary MS. Henstock- Kurzweil integral for Banach space-valued functions. Bulletin of Kerala Math. Associations. 2010; Vol. 6. No 2.

Torchinsky, A. A modern view of the Riemann integral. Lecture Notes in Mathematics 2309. Springer Nature. Feb 2022.

Torchinsky A. The change of variable formula for the Riemann integral. Real Anal. Exchange. 2020; 45(1).

Torchinsky A. Modified Riemann sums of Riemann -Stieltjes integrable functions. ArXiv; 1905.0088 lvl. math. CA. 2019.

Ye G. On Henstock -Kurzweil and McShane integrals of Banach space-Valued functions. J. Math. Anal. Appl. 330. 2007.

Brucker AM, Fleissner RJ, Foran J. The minimal integral which includes Lebesgue integrable functions and derivates. Coll. Math. 1986; 50(2).

Ortiz A. Tópicos sobre análisis armónico. Departamento de Matemáticas. UNT. 1988.

Yosida K. Functional analysis. 2da Edic. Springer- Verlag. N.Y. 1966.

Brikhoff, Garrett: Integration of functions with values in a Banach space. These. Transactions. 1935; Vol. 28.

Dunford N. Integration in general analysis. These. Transactions; 1935; Vol. 27.

Rodriguez J. Integración en espacios de Banach. Departamento de Matem´atica. Universidad de Murcia. 2005.

Gordon RA. The McShane integral of Banach-valued functions. Illinois J. Math. 1990; 34.

Guoju Y, Schwabik S. On the strong McShane integral of functions with values in a Banach space. Czechoslovak Math. J. 2001; 51.

Massarwi E, Halsted S, Musial P, King S. A Stieltjes type extension of the Lr- Perron integral. Real Analysis Exchange. 2014; Vol.40.

Cotlar M. teoremas espectrales, modelos funcionales y dilataciones de Operadores en espacios de Hílbert. Instituto Argentino de Matemática.Bs As.1991.

Calderón AP. Theory of pseudo differential operators on manifolds. Lecturas Universidad de Chicago. 1970.

Tu LW. An introduction to manifolds .2d.Ed. Springer Science .2010.

Neri U. Singular integrals. Springer -Verlag .200 . 1971.

Ortiz A. Operadores integrales singulares. Dpto.Matemática. Universidad Nacional de Trujillo. Perú. 1972.

García-Cuerva J, Rubio de Francia J. Weighted norm inequalities and related Topics. North-Holland. 1985.

Torchinsky A. Real variable methods in harmonic analysis.Academic Press. Inc. 1986.

Ruch D. The definite integrals of Cauchy and Riemann. Digital Commons@ Ursinus College. 2017.

Áila G. Evoluc¸ao dos conceitos de funcao e de integral. Matemática Universitária .No 1. S.M.B.1985

Apostol TM. Mathematical analysis .Addison-Wesley Pub. Com., INC. 1958.

Fulks, W. Advanced calculus .John Wiley & Sons, Inc .1962.

Cater FS. A change of variables formula for Darboux integrals. Real Analysis Exchange. 1999; Vol. 24 (1).

Medvedev FA. Scenes from the history of real functions. Birkhauser Verlag. 1991.

Rutherfoord V, Sagher Y. Negligible variation and the change of variables theorem . arXiv :1212.4574v1. Math.CA .2012.

Rutherfoord VCh. Negligible variation, change of variables, and a smooth analog of the Hobby - Rice theorem. Florida Atlantic University. Boca Raton.2016.

Vyborny, Rudolf. Some applications of Kurzweil - Henstock integration. Mathematica Bohemica. 1993; Vol. 118. No 4.

Satchel DN, Výborný R. A change of variables theorem for the Riemann integral. Real Analysis Exchange. 1997; Vol. 22 .1

Kestelman H. Change of variable in Riemann integration. Math. Gaz. 1961; 45.

López R. Existence and computation of Riemann-Stieltjes integrais through Riemann ´ıntegrals .arXiv: 11071996vl .math.CA. 2011.

Thomson BS. On Riemann sums . Real Analysis Exchange. 2012; Vol. 37(1)

Thomson BS. Characterizations of an indefinite Riemann integrai .Real Analysis Exchange. 2009/2010; Vol.35 (2).

Talvila E. Characterizing integrals of Riemann integrable functions .Real Analysis Exchange .Summer Symposium. 2002.

Riesz F. Sur certains systémes singuliers d’equations intégrales .Annales scientifiques de I’E.N.S.3rd series. 1911; Vol. 28.

Botsko MW. A fundamental theorem of calculus that applies to all Riemann integrable functions . Math.Mag. 1991; Vol. 64. No 5.

Molnár Z, Nagy I, Szil´agy T. A change of variables theorem for the multidimensional Riemann integral. arXiv:0804.2333 [math.CA], 2008.

Kuleshow A. A remark on the change of variable theorem for the Riemann integral. Mathematics.2021; 9(16):1899.

Torchinsky A. The change of variable formula for the Riemann-Stieltjes integral. arXiv.1904.07447 [math.CA]. 2019.

Liu J. Approximative theorem of incomplete Riemann-Stieltjes sum of stochastic integral. arXiv:1803.05182v2 [math.PR]. 2018.

Hunter JK. An introduction to real analysis .Lecture Notes. U.C. Davis .2010.

Published

2023-12-27

How to Cite

Ortiz Fernández, A. . (2023). The integral, a vision of its evolution through time III. Selecciones Matemáticas, 10(02), 404 - 435. https://doi.org/10.17268/sel.mat.2023.02.14