Some Aspects in the PDE. The Dirichlet and the Cauchy Problems

Authors

DOI:

https://doi.org/10.17268/sel.mat.2024.01.10

Keywords:

Potential, Newton, Cuachy, Nirenberg, Hörmander, Problem and principle od Dirichlet, Cauchy problem

Abstract

In this article we present two classic problems in PDE: the Dirichlet problem and the Cauchy problem. Some ideas are previously discussed, such as functions and identities’s Green, and “bad positions” problems. The work of L.Nirenberg [1] is discussed in  detail where some results of L.Hörmander [2] are used.

References

Nirenberg L. Uniqueness in Cauchy problems for differential equations with constant leading coefficients. Communications on Pure and Applied Mathematics. 1957;X.

Hörmander L. On the theory of general partial differential operators. 1955;94.

Lewy H. An example of a smooth linear partial differential equation without solution. Annals of Mathematics. 1957;66(1):155-8.

Plis A. Non-uniqueness in Cauchy’s problem for differential equations of elliptic type. Journal of Mathematics and Mechanics. 1960;9(4):557-62.

Plis A. A smooth linear elliptic differential equation without any solution in a sphere. Communications on Pure and Applied Mathematics. 1961;14(3):599-617.

Figueiredo D. Teoría clássica do potencial. Brasilia: Universidade de Brasília; 1963.

Greenspan D. Introduction to partial differential equations. New York: McGraw-Hill; 1961.

Epstei B. Partial differential equations, An introduction. New York: McGraw-Hill; 1962.

Hellwig G. Partial differential equations. An introduction. New York: Blaisdell Pub.Com; 1964.

Myint-U T. Partial differential equations of mathematical physics. New York: American Elsevier Publi. Comp.; 1973.

Courant R, Hilbert D. Methods of mathematical physics. vol. II. New York: Interscience Publishers; 1962.

Figueiredo D. Analise de Fourier e equac¸oes diferenciais parciais. Rio de Janeiro: IMPA. CNPq; 1977.

Aleksandrov AD, et al ANK. La matemática: su contenido, métodos y significado. vol. 2. Madrid: Alíanza Editorial; 1974.

Kline M. El Pensamiento matemático de la Antigüedad a nuestros días. Madrid: Alianza Editorial; 2012.

Ortiz A. Aspectos básicos en ecuaciones en derivadas parciales. Notas de Matemática No 3 Universidad Nacional de Trujillo. 1988.

Ortiz A. Tópicos sobre ecuaciones en derivadas parciales. Dpto Matemática Universidad Nacional de Trujillo. 2004.

Figueiredo D. O Princípio de Dirichlet. Matemática Universitaria SBM. 1985;1.

Coddington EA. An introduction to ordinary differential equations. New York: Prentice- Hall, INC; 1961.

Evans LC. Partial differential equations. Graduate Studies in Mathematics. vol. 19. American Mathematical Society; 2010.

Hörmander L. Linear partial differential operators. 1963.

Dieudonné J. History of functional analysis. North-Holland Math Studies. 1983;77.

Brézis H. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer Science & Business Media; 2010.

Bers L, John F, Schechter M. Partial differential equations. New York: Interscience Publishers. John Wiley Sons, Inc; 1964.

Stakgold I. Green’s functions and boundary value problems. New York: John Wiley -Sons; 1979.

Egorov YV, Shubin MA. Partial differential equations I. Foundations of the classical theory. New York: Springer-Verlag; 1992.

Jost J. Partial differential equations. Graduate Texts in Mathematics. Springer - Verlag; 2002.

Jr CM. Some recent developments in the theory of partial differential equations. Bulletin of AMS. 1962;68(4).

Brezis H, Browder F. Partial differential equations in the 20th Century. 1998;Advances in Mathematics 135.

Hörmander L. Linear differential operators. Actes, Congres Intern Math. 1970;1.

Treves F. On local solvability of linear partial differential equations. Indiana: Purdue University, Lafayette; 1969.

Calderón AP, Zygmund A. On the existence of certain singular integrals. Acta Mathematica. 1952;88.

Maurin K. Methods of Hilbert spaces. Polish Scientific Publishers; 1967.

Pedersorn RN. Uniqueness in Cauchy’s problem for elliptic equations with double characteristics. Arkiv för Matematik. 1966;6(27):535-49.

Chung SY. Uniqueness of the Cauchy problem for certain quasi-linear partial differential equations. Journal of the Korea Society of Mathematical Education. 1986;25(1):33-7.

Zeman M. Uniqueness of solutions of the Cauchy problem for linear partial differential equation with characteristics of variable multiplicity. Journal of Differential Equations. 1978;27(1):1-18.

Calderón AP. Uniqueness in the Cauchy problem for partial differential equations. American Journal Mathematics. 1958;80(1):16-36.

Nirenberg L. On elliptic partial differential equations. vol. 13. Annali della Scuola Normale Superiore di Pisa; 1959.

Vásquez JM. El Problema de Dirichlet. Universidad de Panamá; 1989.

Ponce AC. II Escola de E.D. Rio de Janeiro. In: Métodos Clássicos em Teoría do Potencial; 2006.

Schwartz L. Méthodes mathématiques pour les sciences physiques. Hermann S G Paris.

;VI(115).

Mijailov VP. Ecuaciones diferenciales en derivadas parciales. Moscú: Editorial MIR; 1978.

Published

2024-07-29

How to Cite

Ortiz Fernández , A. (2024). Some Aspects in the PDE. The Dirichlet and the Cauchy Problems. Selecciones Matemáticas, 11(01), 153 - 188. https://doi.org/10.17268/sel.mat.2024.01.10

Most read articles by the same author(s)

1 2 > >>