Alberto P. Calderón. Theory of Potential and Singular Integrals. A Historical Perspective


  • Alejandro Ortiz Fernández Sección Matemática, Pontificia Universidad Católica del Perú.


Alberto Calderón, Theory of Potential, Singular Integrals.


This article is dedicated to give an historical critique vision about the contribution of the great mathematician Alberto P. Calderon on potential classical theory and on the singular integrals. In general, Calderon’s work was central in harmonic analysis in the second half of 20th Century because of it’s deepness, high originality and
beauty of his Works.


CALDERÓN, A.P., On the theorems of M. Riesz and Zygmund, Proc. A.M.S 533-5, 1950.

CALDERÓN, A.P., On the Behaviour of Harmonic Functions on the Boundary, T.A.M.S, 68, 47-54, 1950.

CALDERÓN, A.P., On a theorems of Marchinkiewciz and Zygmund, Proc. T.A.M.S 68, 55-61, 1950.

CALDERÓN, A.P., Integrales singulares y operadores seudo diferenciales, historia y perspectiva, Annal. Acad. Nac. Cs. Ex. Fis. Nat. Bs. As, Tomo 38, 1986.

CALDERÓN, A.P. AND ZYGMUND A., On the Theorem of Hausdorff - Young and its Extensions. Ann. Math. Studies. 25. 166-88, 1950.

CALDERÓN, A.P. AND ZYGMUND A., Note on the Boundary Values of Function of Several Complex Variables. Ann. Math. Studies. 25. 144-65, 1950.

CALDERÓN, A.P. AND ZYGMUND A., On the Existence of Certain Singular Integrals. Ann. Math. 88. 85-139, 1952.

CALDERÓN, A.P. AND CALDERÓN C.P., FABES, E - JODEIT, M - RIVIERE, N.M., Applications of the Cauchy Integral on Lipschitz

Curves. Bull of the A.M.S Vol. 84, 1978.

CARLESON L., On the existence of Boundary Values for Harmonic Functions in Several Variables. Ark. Math. 4. 393-399, 1962.

FABES E. ANDA NERI U. , Harmonic Functions with BMO Traves on Lipschitz Curves. University of Maryland (Pre-Print), 1978.

FABES E. AND NERI U. , Dirichlet Problem with BMO Data in Lipschitz Domain. Proc. Am. Math. Soc, 33-39, 1980.

FABES E. AND JODEIT M. RIVIERE N. , Potential Techniques for Boundary Value Problem on C1 domains. Acta Math. 141. 165-186, 1978.

JERISON D. AND KENIG C. , The Neumann Problem on Lipschitz Domains. Bol. Amer. Soc. Vol. 4, 203-207, 1981.

JERISON D. AND KENIG C. , Boundary Behavior of Harmonic Functions in non-tangentially accessible domains. Advances in Math. 80-147, 1982.

KENIG CARLOS E., Harmonic Analysis Techniques for Second Order Elliptic Value Problems. AMS, Nat. Scie. Foundation. CBMS 83, 1994.

ORTIZ A. , Operadores Integrales Singulares. Dpto. Matemática. UNT. Trujillo, Perú, 1972.

ORTIZ A. , Integrales Singulares. La Escuela de Chicago. Sección Matemática. PUCP. UNT. Lima, 2011.

TORCHINSKY, A. , Real-Variable Methods in Harmonic Analysis. Academic Press. Pure and Appl., Math. 123, 1986.



How to Cite

Ortiz Fernández, A. (2017). Alberto P. Calderón. Theory of Potential and Singular Integrals. A Historical Perspective. Selecciones Matemáticas, 4(02), 230-241. Retrieved from

Most read articles by the same author(s)