The integral: a vision of its evolution through time I
DOI:
https://doi.org/10.17268/sel.mat.2023.01.16Keywords:
Integral of Cauchy, integral of Riemann, integral of Stieltjes, integral of Dirichlet, measure of Borel, measure of LebesgueAbstract
This article is the first part of one that has three parts. In the first one we present a vision of the evolution of the idea of integral, from ancient Greece to the Lebesgue integral. In the second part we will present how the Riemann integral has been investigated towards a unified theory of the integral.
References
Aleksandrov A, Kolmogorov A, Laurentiev M. La Matemática: su contenido, métodos y significado. Vol 3. Madrid: Alianza Editorial; 1973.
Apostol T. Mathematical Analysis. Addison-Wesley Publishing Company; 1957.
Avila G. Evolução dos conceitos de função e de integral. Matemática Universitaria. Soc. Bras. de Matem. No.1; 1985.
Bárcenas D. La integral de Lebesgue un poco más de cien años después. Boletín Asociación Matemática Venezolana. 2006;Vol XIII.
Bourbaki N. Elementos de historia de las matemáticas. Alianza Editorial; 1972.
Burton D. The history of mathematical. An introduction. McGraw Hill; 2006.
Courant R, Robbins H. ¿Qué son las matemáticas?. Fondo de Cultura Económica; 2010.
Fulks W. Advanced Calculus. An introduction to analysis. John Wiley; 1962.
González PM. Arquímedes y los orígenes del cálculo integral. Ciencia Abierta. 2008; 24.
De Guzmán M, Rubio B. Integración: teoría y técnicas. Edit. Alhambra; 1979.
Hawking S. Dios creó los números. Crítica; 2010.
Jahnke H. A history of analysis. History of Mathematics. Vol. 24. AMS; 2003.
Kline M. El pensamiento matemático de la Antigüedad a nuestros días. Alianza Editorial; 2012.
Medvedev F. Scenes from the history of real functions. Birkhäuser Verlag; 1991.
Natanson I. Theory of functions of a real variable. Vol. I-II. Frederick Ungar Publishing Co.; 1961. Dover Pub; 2016.
Navarrete H. Teoría de la medida. En: Grandes ideas de la matemática. Eslovenia; 2019.
Ortiz A. Algunas ideas sobre la génesis del cálculo infinitesimal. Selecciones Matemáticas. 2021; Vol.8(1):173-195.
Ortiz A. Algunas ideas sobre la evolución del análisis matemático real. Selecciones Matemáticas. 2021Vol.8(1):196-217.
Ortiz A. La Matemática a través de clásicas áreas. Edición previa; PUCP-UNT Vols. 2 y 3. 2016-2017.
Ortiz A. Análisis real-funcional. Notas de Matemáticas No1. Universidad Nacional de Trujillo. Perú. 1986.
Ortiz A. Historia de la Matemática. La Matemática en la antigüedad. Vol. 1. UNT-PUCP. Lima. Perú. 2005.
Saks S. Theory of the integral. 2nd ed. Dover Publications, INC; New York; 1964.
Stahl S. Real analysis. A historical approach. John Wiley, Sons; New York; 1999.
Torchinsky A. Problems in real and functional analysis. Graduate Studies in Mathematics. Vol. 166. AMS; 2015.
Torchinsky A. Real variables. Addison-Wesley Publishing Company; N.Y.; 1988.
Wheeden RL, Zygmund A. Measure and integral. An introduction to real analysis. Marcel Dekker, INC; N.Y.; 1977.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Selecciones Matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
1. The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution License,Atribución 4.0 Internacional (CC BY 4.0) which allows third parties to use what is published whenever they mention the authorship of the work And to the first publication in this magazine.
2. Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly state that The paper was first published in this journal.
3. Authors are encouraged to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and to a greater and more rapid dissemination Of the published work.