On a special class of hypersurfaces in R5

Authors

  • Carlos M. C. Riveros Departamento de Matemática, Universidade de Brasília, Brasília, DF, Brazil.

DOI:

https://doi.org/10.17268/sel.mat.2025.02.13

Keywords:

Hypersurfaces, Laplace invariants, lines of curvature, Mobius curvature

Abstract

In this paper we study hypersurfaces in R5 parametrized by lines of curvature, with four distinct principal curvatures and with Laplace invariants mji = mki = mli = 0, mjik ̸= 0, mjkl ̸= 0, mljk ̸= 0, Tijkl ̸= 0 for i, j, k, l distinct fixed indices. We characterize locally a generic family of such hypersurfaces in terms of the principal curvatures and four vector valued functions of one variable. Moreover, we show that these vector valued functions are invariant under inversions and homotheties. We observe that this class of hypersurfaces cannot have constant Mobius curvature.

References

Cecil TE, Chern SS. Dupin submanifolds in Lie sphere geometry, Differential geometry and topology 1-48, Lecture Notes in Math. 1369, Springer, 1989.

Cecil TE, Ryan PJ. Conformal geometry and the cyclides of Dupin, Can. J. Math. 1980; 32:767-782.

Cecil TE, Ryan PJ. Tight and taut immersions of manifolds, Pitman, London, 1985.

Miyaoka R. Compact Dupin hypersurfaces with three principal curvatures, Math. Z. 1984; 187:433-452.

Pinkall U. Dupinsche Hyperflachen, Dissertation, Univ. Freiburg, 1981.

Pinkall U. Dupin hypersurfaces, Math. Ann. 1985; 270:427–440.

Pinkall U, Thorbergsson G. Deformations of Dupin hypersurfaces , Proc. Amer. Math. Soc. 1989; 107:1037–1043.

Riveros CMC. A Characterization of Dupin Hypersurfaces in R4 , Bull. Belg. Math. Soc. Simon Stevin 2013; 20:145–154.

Riveros CMC, Tenenblat K. On four dimensional Dupin hypersurfaces in Euclidean space, An. Acad. Bras. Cienc. 2003; 75(1):1-7.

Riveros CMC, Tenenblat K. Dupin hypersurfaces in R5 . Canad. J. Math. Vol. 2005; 57(6):1291–1313.

Riveros CMC, Tenenblat K, Rodrigues LMA. On Dupin hypersurfaces with constant Möbius curvature, Pacific J. Math. 2008; 236(1): 89-103.

Stolz S. Multiplicities of Dupin hypersurfaces, Invent.Math. 1999; 138:253–279.

Thorbergsson G. Dupin hypersurfaces, Bull. London Math. Soc. 1983; 15:493–498.

Kamran N, Tenenblat K. Laplace transformation in higher dimensions, Duke Math. Journal 1996; 84:237–266.

Kamran N, Tenenblat K. Periodic systems for the higher-dimensional Laplace transformation, Discrete and continuous dynamical systems, 1998; 359–378.

Downloads

Published

2025-12-27

How to Cite

C. Riveros, C. M. (2025). On a special class of hypersurfaces in R5. Selecciones Matemáticas, 12(02), 423 - 438. https://doi.org/10.17268/sel.mat.2025.02.13