Forecasting occurrence of palm weevil Rhynchophorus palmarum L. (Coleoptera, Curculionidae) using Autoregressive Integrated Moving Average modeling
DOI:
https://doi.org/10.17268/sci.agropecu.2023.015Palavras-chave:
Rhynchophorus palmarum, Oil palm, ARIMA, Modeling, Insect pest forecasting, SARIMA, Time series analysisResumo
Oil palm (Elaeis guineensis L.) is a crucial crop in Ecuador, considerably affected by black palm weevil Rhynchophorus palmarum L. (Coleoptera: Curculionidae) for several years. Despite its importance, the behavior of the black weevil in Ecuador is not well comprehended presently. Therefore, this study aimed to predict infestation patterns of the black palm weevil in Ecuador using a mathematical model based on monitoring data. Data on the number of insects per trap from a commercial oil palm farm in Quinindé, Ecuador, was collected every two weeks for five years (2016-2020) and analyzed using the Classical Fourier (CF) spectrum and the Dickey-Fuller test to determine seasonality. The trend component of the data dropped from 16.33 in January 2017 to 11.96 in January 2019, with a fluctuation ranging from -0.11 to 2.50 observed for the entire data set. The results obtained after fitting the model ranged from -0.11 to 3.19, with a maximum of 5.30. The augmented Dickey-Fuller (ADF) test for the black weevil time series yielded a result of -5.60 (P<0.01). The partial autocorrelation ranged from -0.35 to 0.1. Based on our model, we projected the occurrence of black palm weevil from 2021 to 2024, with a fluctuation in the number of insects per trap ranging from 12.68 in January 2021 to 13.023 in November 2023. This model can be used to predict future insect occurrences in Ecuador, providing valuable insights into the behavior of the black weevil and using it for effective development control measures for this pest.
Referências
Adebayo, F. A., Sivasamy, R., & Shangodoyin, D. K. (2014). Forecasting Stock Market Series with ARIMA Model. Journal of Statistical and Econometric Methods, 3(3), 65-77.
Adebiyi, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Comparison of ARIMA and artificial neural networks models for stock price prediction. Journal of Applied Mathematics, 2014. https://doi.org/10.1155/2014/614342
Andrew, M. L. (1993). Geostatistics and geographic information systems in applied insect ecology. Annual Review of Entomology, 38(1), 303–328. https://doi.org/10.1146/annurev.ento.38.1.303
Antony, B., Johny, J., Montagné, N., Jacquin‐Joly, E., Capoduro, R., et al. (2021). Pheromone receptor of the globally invasive quarantine pest of the palm tree, the red palm weevil (Rhynchophorus ferrugineus). Molecular Ecology, 30(9), 2025-2039. https://doi.org/10.1111/mec.15874
Breiman, L. (2001). Statistical Modeling: The two cultures (with comments and a rejoinder by the author). Statistical Science, 16(3), 199-231. https://doi.org/10.1214/ss/1009213726
Büyükşahin, Ü. Ç., & Ertekin, Ş. (2019). Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition. Neurocomputing, 361, 151-163. https://doi.org/10.1016/j.neucom.2019.05.099
Camargo, M. I., Sánchez, P., Denardi, S. E., & Caetano, F. H. (2010). Rhyncophorus palmarum L. (Linnaeus, 1758): A morphological and histological study of the female reproductive system. Microscopy Research and Technique, 74(9). https://doi.org/10.1002/jemt.20969
Charemza, W. W., & Syczewska, E. M. (1998). Joint application of the Dickey-Fuller and KPSS tests. Economics Letters, 61(1), 17-21. https://doi.org/10.1016/S0165-1765(98)00149-9
Chen, J., Yang, J., Huang, S., Li, X., & Liu, G. (2023). Forecasting tourist arrivals for Hainan island in China with decomposed broad learning before the COVID-19 pandemic. Entropy, 25(2), 338. https://doi.org/10.3390/e25020338
Chiu, L.-Y., Arcega Rustia, D. J., Lu, C.-Y., & Lin, T.-T. (2019). Modelling and forecasting of greenhouse whitefly incidence using time-series and ARIMAX analysis. IFAC-PapersOnLine, 52(30), 196-201. https://doi.org/10.1016/j.ifacol.2019.12.521
Cryer, J. D., & Chan, K.-S. (2008). Time Series Analysis, Springer Texts in Statistics.
Springer New York, New York, NY. https://doi.org/10.1007/978-0-387-75959-3
Dalbon, V. A., Acevedo, J. P. M., Ribeiro Junior, K. A. L., Ribeiro, T. F. L., da Silva, J. M., Fonseca, H. G., Santana, A. E. G., & Porcelli, F. (2021). Perspectives for synergic blends of attractive sources in South American palm weevil mass trapping: Waiting for the red palm weevil Brazil invasion. Insects, 12(9), 828. https://doi.org/10.3390/insects12090828
de Oliveira, W. K., de França, G. V. A., Carmo, E. H., Duncan, B. B., de Souza Kuchenbecker, R., & Schmidt, M. I. (2017). Infection-related microcephaly after the 2015 and 2016 Zika virus outbreaks in Brazil: a surveillance-based analysis. The Lancet, 390(10097), 861-870. https://doi.org/10.1016/S0140-6736(17)31368-5
Elango, K., Nelson, S. J., & Aravind, A. (2020). Rugose spiralling whitefly, Aleurodicus rugioperculatus Martin (Hemiptera, Aleyrodidae): An invasive foes of coconut. Journal of Entomological Research, 44(2), 261. https://doi.org/10.5958/0974-4576.2020.00046.8
Esparza-Díaz, G., Olguin, A., Carta, L. K., Skantar, A. M., & Villanueva, R. T. (2013). Detection of Rhynchophorus palmarum (Coleoptera: Curculionidae) and identification of associated nematodes in South Texas. Florida Entomologist, 96(4), 1513-1521. https://doi.org/10.1653/024.096.0433
FAOSTAT. (2019). FAOSTAT: Statistical database. FAOSTAT: Statistical Database.
Francq, C., & Zakoïan, J.-M. (2005). Recent Results for Linear Time Series Models with Non Independent Innovations. In Statistical Modeling and Analysis for Complex Data Problems (pp. 241-265). Springer-Verlag. https://doi.org/10.1007/0-387-24555-3_12
Gassler, B., & Spiller, A. (2018). Is it all in the MIX? Consumer preferences for segregated and mass balance certified sustainable palm oil. Journal of Cleaner Production, 195. https://doi.org/10.1016/j.jclepro.2018.05.039
Guamani-Quimis, L. A., Solís-Bowen, A. L., Portalanza, D., & Garcés-Fiallos, F. R. (2022). Can Mathematical models describe spear rot progress in oil palm trees? A five-year black weevil-disease assessment from Ecuador. Agriculture, 12(2), 257. https://doi.org/10.3390/agriculture12020257
Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27(3). https://doi.org/10.18637/jss.v027.i03
Kannan, M., Ananthan, M., Kalyanasundaram, M., Jayaprakash, S. A., Elango, K., & Dinesh Kumar, P. (2022). Population dynamics, weather parameters interaction of insect pests on Indian bean, Lablab purpureus and prediction analysis using ARIMAX model. Journal of Environmental Biology, 43(4), 578-584. https://doi.org/10.22438/jeb/43/4/MRN-3025
Khudri, N. A. F. R. S., Mohd Masri, M. M., Maidin, M. S. T., Kamarudin, N., Hussain, M. H., Abd Ghani, I., & Jalinas, J. (2021). Preliminary evaluation of acoustic sensors for early detection of red palm weevil, Rhynchophorus ferrugineus incidence on oil palm and coconut in Malaysia. International Journal of Tropical Insect Science, 41(4), 3287-3292. https://doi.org/10.1007/s42690-021-00499-3
Kurdi, H., Al-Aldawsari, A., Al-Turaiki, I., & Aldawood, A. S. (2021). Early detection of red palm weevil, Rhynchophorus ferrugineus (Olivier), infestation using data mining. Plants, 10(1), 95. https://doi.org/10.3390/plants10010095
Lima, M. V. M. de, & Laporta, G. Z. (2020). Evaluation of the models for forecasting dengue in Brazil from 2000 to 2017: An ecological time-series study. Insects, 11(11), 794. https://doi.org/10.3390/insects11110794
Mgaya, J. F. (2019). Application of ARIMA models in forecasting livestock products consumption in Tanzania. Cogent Food & Agriculture, 5(1), 1607430. https://doi.org/10.1080/23311932.2019.1607430
Montero-Manso, P., Athanasopoulos, G., Hyndman, R. J., & Talagala, T. S. (2020). FFORMA: Feature-based forecast model averaging. International Journal of Forecasting, 36(1), 86-92. https://doi.org/10.1016/j.ijforecast.2019.02.011
Murguía-González, J., Landero-Torres, I., Leyva-Ovalle, O. R., Galindo-Tovar, M. E., Llarena-Hernández, R. C., Presa-Parra, E., & García-Martínez, M. A. (2018). Efficacy and cost of trap-bait combinations for capturing Rhynchophorus palmarum L. (Coleoptera: Curculionidae) in ornamental palm polycultures. Neotropical Entomology, 47(2), 302-310. https://doi.org/10.1007/s13744-017-0545-8
Narava, R., Kumar, S. R., Jaba, J., Kumar, A., Rao, R., et al. (2022). Development of temporal model for forecasting of Helicoverpa armigera (Noctuidae: Lepidopetra) using Arima and Artificial Neural Networks. Journal of Insect Science, 22(3). https://doi.org/10.1093/jisesa/ieac019
R Core Team. (2021). R: A language and environment for statistical computing v. 3.6. 1 (R Foundation for Statistical Computing, Vienna, Austria, 2019). Scientific Reports.
Senf, C., Seidl, R., & Hostert, P. (2017). Remote sensing of forest insect disturbances: Current state and future directions. International Journal of Applied Earth Observation and Geoinformation, 60, 49-60. https://doi.org/10.1016/j.jag.2017.04.004
Sporleder, M., Tonnang, H. E. Z., Carhuapoma, P., Gonzales, J. C., Juarez, H., & Kroschel, J. (2013). Insect Life Cycle Modelling (ILCYM) software - a new tool for regional and global insect pest risk assessments under current and future climate change scenarios. In Potential invasive pests of agricultural crops (pp. 412-427). CABI. https://doi.org/10.1079/9781845938291.0412
Stadnytska, T. (2010). Deterministic or Stochastic Trend. Methodology, 6(2), 83-92. https://doi.org/10.1027/1614-2241/a000009
Svetunkov, I., Chen, H., & Boylan, J. E. (2023). A new taxonomy for vector exponential smoothing and its application to seasonal time series. European Journal of Operational Research, 304(3), 964-980. https://doi.org/10.1016/j.ejor.2022.04.040
Tang, K. H. D., & Al Qahtani, H. M. S. (2020). Sustainability of oil palm plantations in Malaysia. In Environment, Development and Sustainability (Vol. 22, Issue 6). https://doi.org/10.1007/s10668-019-00458-6
The World Bank. (2020). INDONESIA ECONOMIC PROSPECTS The Long Road to Recovery. Iep, 81. http://ditjenbun.pertanian.go.id
Zhao, C., Hu, P., Liu, X., Lan, X., & Zhang, H. (2023). Stock market analysis using time series relational models for stock price prediction. Mathematics, 11(5), 1130. https://doi.org/10.3390/math11051130.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Scientia Agropecuaria
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).