Avances en la comprensión de la interacción entre Ceratocystis cacaofunesta y Xyleborus ferrugineus (Coleoptera: Curculionidae: Scolytinae) en árboles de cacao

Autores/as

  • Anderson Paladines-Rezabala Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Campus Experimental La Teodomira, km 13,5, Lodana, Santa Ana.
  • Anthony A. Moreira-Morrillo Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Campus Experimental La Teodomira, km 13,5, Lodana, Santa Ana.
  • Alejandro E. Mieles Instituto de Investigación, Universidad Técnica de Manabí, Avenida Universitaria, Portoviejo.
  • Felipe R. Garcés-Fiallos Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Campus Experimental La Teodomira, km 13,5, Lodana, Santa Ana.

DOI:

https://doi.org/10.17268/sci.agropecu.2022.004

Palabras clave:

Theobroma cacao L., Mal del machete, escarabajo negro, transmisión del fitopatógeno, semioquímicos

Resumen

El cacao (Theobroma cacao L.) es uno de los principales cultivos de países latinoamericanos y africanos, siendo comercializadas sus almendras para la elaboración de chocolate. Sin embargo, diferentes factores bióticos pueden afectar negativamente la producción del cultivo, especialmente en pequeñas fincas donde el manejo por parte de los agricultores es exigua o nula. El Mal del machete (Ceratocystis cacaofunesta Engelbrecht & Harrington) junto a coleópteros barrenadores (Coleoptera: Curculionidae: Scolytinae), siguen siendo los principales problemas que aquejan el cacao. Se ha podido observar que ambos organismos interactúan intrínsecamente dentro de los troncos de árboles de cacao. A pesar de la importancia de esta interacción, por lo general, el número de artículos de investigación como de revisión realizados hasta la presente fecha, se han enfocado principalmente en estudiar cada factor biótico por separado, o han sido abordados de forma general. Así, en esta revisión objetivamos principalmente la interacción entre el Mal del machete y los coleópteros barrenadores, especialmente cómo y cuál es el insecto que transmite la enfermedad en plantas de cacao. Adicionalmente, se ha hecho una caracterización exhaustiva de Xyleborus ferrugineus como posible vector de C. cacaofunesta en árboles de cacao. A partir de esta revisión, nosotros podemos decir que aún falta identificar y diferenciar completamente las especies de Ceratocystis, comprender más a profundidad la ecología del escolítido X. ferrugineus, estudiar la interacción entre C. cacaofunesta y vectores a partir de la respuesta del huésped, y generar estudios en el campo de la ecología química del hongo-vector-árbol.

Citas

Acevedo, F. E. (2020). Ecología química de interacciones entre plantas, insectos y controladores naturales de plagas herbívoras. In P. Benavides & C. Góngora (Eds). El Control Natural de Insectos en el Ecosistema Cafetero Colombiano. Cenicafé. 106-141.

Ambrosio, A. B., do Nascimento, L. C., Oliveira, B. v., L Teixeira, P. J. P., Tiburcio, R. A., Toledo Thomazella, D. P., et al. (2013). Global analyses of Ceratocystis cacaofunesta mitochondria: From genome to proteome. BMC Genomics, 14(1), 1–16.

Ammar E.D. (1994) Propagative Transmission of Plant and Animal Viruses by Insects: Factors Affecting Vector Specificity and Competence. In: Harris K.F. (eds) Advances in Disease Vector Research. Advances in Disease Vector Research, vol 10. Springer, New York, NY. 289–331.

Amores, F. (1999). La dificultad para establecer el rumbo tecnológico que han limitado el impacto económico de la investigación de cacao durante los últimos 50 años Quito-Ecuador. Tesis de maestría. Universidad Internacional SEK pág. 188.

Beaver, R., Wilding, N., Collins, N., Hammond, P., & Weber, J. (1989). Insect-fungus interaction. Academic Press, London. pp 121-143.

Beeman, S. L., & Norris, D. M. (1977). Embryogenesis of Xyleborus ferrugineus (Fabr.) (Coleoptera, Scolytidae). II. Developmental rates of male and female embryos. Journal of Morphology, 152(2), 221–227.

Bell, A. A., & Mace, M. E. (1981). Biochemistry and Physiology of Resistance. In M. E. Mace, A. A. Bell, & C. H. Beckman (Eds.), Fungal Wilt Diseases of Plants. Academic Press. 431–486.

Bidart‐Bouzat, M. G., & Imeh‐Nathaniel, A. (2008). Global change effects on plant chemical defenses against insect herbivores. Journal of Integrative Plant Biology, 50(11), 1339–1354.

Boddy, L. (2016). Pathogens of Autotrophs. In S. C. Watkiston, L. Boddy, & N. P. Money (Eds.), The Fungi (3.a ed., pp. 245–292). Academic Press.

Borden, J. H. (1997) Disruption of Semiochemical-Mediated Aggregation in Bark Beetles. En: Cardé R.T., Minks A.K. (eds) Insect Pheromone Research. Springer, Boston, MA. 421-438.

Brown, J. K. (2016). Vector-mediated transmission of plant pathogens. Am Phytopath Society.

Cabrera, O. G., Molano, E. P. L., José, J., Álvarez, J. C., & Pereira, G. A. G. (2016) Ceratocystis Wilt Pathogens: History and Biology-Highlighting C. cacaofunesta, the Causal Agent of Wilt Disease of Cacao. In: Bailey B., Meinhardt L. (eds) Cacao Diseases. Springer, Cham. 383-428.

Cale, J. A., Teale, S. A., Johnston, M. T., Boyer, G. L., Perri, K. A., & Castello, J. D. (2015). New ecological and physiological dimensions of beech bark disease development in aftermath forests. Forest Ecology and Management, 336, 99–108.

Cedeño-Moreira, Á. V., Romero-Meza, R. F., Auhing-Arcos, J. A., Mendoza-León, A. F., Abasolo-Pacheco, F., & Canchignia-Martínez, H. F. (2020). Caracterización de Phytophthora spp. y aplicación de rizobacterias con potencial en biocontrol de la enfermedad de la mazorca negra en Theobroma cacao variedad CCN-51. Scientia Agropecuaria, 11(4), 503-512.

Crone, L. J. (1962). Symptoms, spread, and control of canker stain of Plane trees. PhD Thesis. New Brunswick, New Jersey, USA. Rutgers University.

de Beer, Z. W., Seifert, K. A., & Wingfield, M. J. (2013). A nomenclator for ophiostomatoid genera and species in the Ophiostomatales and Microascales. CBS Biodiversity Series, 12, 245–322.

de Oliveira, B. F., Silva, S., & Damaceno, V. O. (2009). Identification of resistance source to Ceratocystis wilt in cacao seedlings. Agrotrópica, 21(1) p. 83-88.

Delgado, C., & Couturier, G. (2017). Primer registro de Xylosandrus compactus (Coleoptera: Curculionidae: Scolytinae) sobre cacao en Perú. Revista Colombiana de Entomología, 43(1), 121–124.

Delgado, R., & Suárez, C. (2003). Diferencias em agressividad entre aislamientos de Ceratocystis fimbriata de Ecuador y Brasil en cacao. XII Seminário Nacional de Sanidad Vegetal, 12.

Desrosiers, R. (1957). Developments in the control of witchs’ broom, monilia pod rot and ceratostomella diseases of cacao. Conferencia Interamericana de Cacao. Bahía (Brasil). May 1956.

Dickens, J. C., Billings, R. F., & Payne, T. L. (1992). Green leaf volatiles interrupt aggregation pheromone response in bark beetles infesting southern pines. Experientia, 48(5), 523–524.

Doughari, J. (2015). An overview of plant immunity. Plant Pathology & Microbiology, 6(11), 322.

Edmonds, R. L., Hawk, G. M., Long, J. N., Franklin, J. F., Emmingham, W. H., et al. (1982). Analysis of coniferous forest ecosystems in the western United States. US/IBP Synthesis Ser 14. Stroudsburg, PA: Hutchinson Ross Publishing Co. 419 p.

Egonyu, J. P., Baguma, J., Ogari, I., Ahumuza, G., & Ddumba, G. (2017). Host preference by the twig borer Xylosandrus compactus (Coleoptera: Scolytidae) and simulated influence of sha-de trees on its populations. International Journal of Tropical Insect Science, 37, 183–188.

Engelbrecht, C. J., Harrington, T. C., & Alfenas, A. (2007). Ceratocystis wilt of cacao - a disease of increasing importance. Phytopathology, 97(12), 1648–1649.

Engelbrecht, C. J., & Harrington, T. C. (2005). Intersterility, morphology and taxonomy of Ceratocystis fimbriata on sweet potato, cacao and sycamore. Mycologia, 97(1), 57–69.

Engelbrecht, C. J., Harrington, T. C., Steimel, J., & Capretti, P. (2004). Genetic variation in eastern North American and putatively introduced populations of Ceratocystis fimbriata f. platani. Molecular Ecology, 13(10), 2995–3005.

Faccoli, M., & Santini, A. (2016). Dutch Elm Disease and Elm Bark Beetles: Pathogen–Insect Interaction. In Brown, J. K. (Ed.) Vector-mediated transmission of plant pathogens. American Phytopathology Society. 73-86.

Franco, F. P., Túler, A. C., Gallan, D. Z., Gonçalves, F. G., Favaris, A. P., Peñaflor, M. F. G. V, Leal, W. S., Moura, D. S., Bento, J. M. S., & Silva-Filho, M. C. (2021). Fungal phytopathogen modulates plant and insect responses to promote its dissemination. The ISME Journal, 15, 3522-3533.

Freeman, B. C., & Beattie, G. A. (2008). An overview of plant defenses against pathogens and herbivores. The Plant Health Instructor.

Gibbs, J. N. (1978). Intercontinental epidemiology of Dutch elm disease. Annual Review of Phytopathology, 16(1), 287–307.

Gillette, N. E., & Fettig, C. J. (2021). Semiochemicals for bark beetle (Coleoptera: Curculionidae) management in western North America: where do we go from here? The Canadian Entomologist, 153(1), 121–135.

Gitau, C. W., Bashford, R., Carnegie, A. J., & Gurr, G. M. (2013). A review of semiochemicals associated with bark beetle (Coleoptera: Curculionidae: Scolytinae) pests of coniferous trees: A focus on beetle interactions with other pests and their associates. Forest Ecology and Management, 297, 1–14.

Goitía, W., & Rosales, C. J. (2001). Relación entre la incidencia de escolítidos y la necrosis del cacao en Aragua, Venezuela. Manejo Integrado de Plagas, 62(4), 65–71.

Gomez, D. F., Rabaglia, R. J., Fairbanks, K. E. O., & Hulcr, J. (2018). North American Xyleborini north of Mexico: A review and key to genera and species (Coleoptera, Curculionidae, Scolytinae). ZooKeys, 768, 19.

Grohs, H., & Grumiller, J. (2021). Alles auf der Schokoladenseite? Nachhaltigkeit in der globalen und österreichischen Kakao-und Schokoladenwertschöpfungskette.

Halsted, B. D. (1890). Some fungous diseases of the sweet potato. The Black Rot., 76, 7–14.

Harrington, T. C. (2000). Host specialization and speciation in the American wilt pathogen. Fitopatologia Brasileira, 25, 262–263.

Harrington, T. C. (2009). The genus Ceratocystis. Where does the oak wilt fungus fit? Proceedings of the 2nd National Oak Wilt Symposium, 166, 21e35.

Harrington, T. C., & McNew, D. L. (1997). Self-fertility and unidirectional mating-type switching in Ceratocystis coerulescens, a filamentous ascomycete. Current Genetics, 32(1), 52–59.

Hayasaka, D., Kuwayama, N., Takeo, A., Ishida, T., Mano, H., et al. (2015). Different acute toxicity of fipronil baits on invasive Linepithema humile supercolonies and some non-target ground arthropods. Ecotoxicology, 24(6), 1221–1228.

Hinds, T. E. (1972). Insect transmission of Ceratocystis species associated with aspen cankers. Phytopathology, 62(2), 221–225.

Hogenhout, S. A., Ammar, E.-D., Whitfield, A. E., & Redinbaugh, M. G. (2008). Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327–359.

ICCO. (2021). Quarterly bulletin of cocoa statistics, vol XLVII, no 2, Cocoa year 2020/2021.

INEC. (2021). Encuesta de Superficie y Producción Agropecuaria Continua 2020. INEC Ecuador.

Iton, E. F., & Conway, G. E. (1961). Studies on a wilt disease of Cacao at River Estate. II. Some aspects of wind transmission.

Jactel, H., van Halder, I., Menassieu, P., Zhang, Q. H., & Schlyter, F. (2001). Non-host volatiles disrupt the response of the stenographer bark beetle, Ips sexdentatus (Coleoptera: Scolytidae), to pheromone-baited traps and maritime pine logs. Integrated Pest Management Reviews, 6(3), 197–207.

Johnson, J. A., Harrington, T. C., & Engelbrecht, C. J. B. (2005). Phylogeny and taxonomy of the North American clade of the Ceratocystis fimbriata complex. Mycologia, 97(5), 1067–1092.

Juzwik, J., Appel, D. N., MacDonald, W. L., & Burks, S. (2011). Challenges and successes in managing oak wilt in the United States. Plant Disease, 95(8), 888–900.

Kendra, P. E., Montgomery, W. S., Niogret, J., Peña, J. E., Capinera, J. L., et al. (2011). Attraction of the redbay ambrosia beetle, Xyleborus glabratus, to avocado, lychee, and essential oil lures. Journal of Chemical Ecology, 37(9), 932–942.

Kendra, P. E., Tabanca, N., Cruz, L. F., Menocal, O., Schnell, E. Q., & Carrillo, D. (2022). Volatile emissions and relative attraction of the fungal symbionts of tea shot hole borer (Coleoptera: Curculionidae). Biomolecules, 12(1), 97.

Kingsolver, J. G., & Norris, D. M. (1977). External morphology of Xyleborus ferrugineus (Fabr.) (Coleoptera: Scolytidae). I. Head and prothorax of adult males and females. Journal of Morphology, 154(1), 147–156.

Kirkendall, L. R., Biedermann, P. H. W., & Jordal, B. H. (2015). Evolution and diversity of bark and ambrosia beetles. In Bark beetles (pp. 85–156). Elsevier.

Magalhães, S. T. V, Guedes, R. N. C., Demuner, A. J., & Lima, E. R. (2008). Effect of coffee alkaloids and phenolics on egg-laying by the coffee leaf miner Leucoptera coffeella. Bulletin of Entomological Research, 98(5), 483–489.

Marelli, J. P., Guest, D., Bailey, B. A., Evans, H. C., Brown, J. K., Junaid, M., Barreto, R. W., Lisboa, D. O. & Puig, A. S. (2019). Chocolate under threat from old and new cacao diseases. Phytopathology, 109(8), 1331-1343.

Marin, M., Castro, B., Gaitan, A., Preisig, O., Wingfield, B. D., & Wingfield, M. J. (2003). Relationships of Ceratocystis fimbriata isolates from Colombian coffee‐growing regions based on molecular data and pathogenicity. Journal of Phytopathology, 151(7‐8), 395–405.

Marin, M., & Wingfield, M. J. (2006). A review of Ceratocystis sensu stricto with special reference to the species complexes C. coerulescens and C. fimbriata. Revista Facultad Nacional de Agronomía Medellín, 59(1), 3045–3375.

Martini, X., Hughes, M. A., Smith, J. A., & Stelinski, L. L. (2015). Attraction of redbay ambrosia beetle, Xyleborus glabratus, to leaf volatiles of its host plants in North America. Journal of Chemical Ecology, 41(7), 613–621.

Mora-Ocampo, I. Y., Pirovani, C. P., Luz, E. D. M. N., Rêgo, A. P. B., Silva, E., Rhodes-Valbuena, M., & Corrêa, R. X. (2021). Ceratocystis cacaofunesta differentially modulates the proteome in xylem-enriched tissue of cocoa genotypes with contrasting resistance to Ceratocystis wilt. Plant, 254(5), 1–29.

Mora-Silva, W., Garcés-Fiallos, F. R., Suarez-Capello, C., Belezaca-Pinargote, C. E., Cedeño-Loja, P., & Vallejo, E. (2015). Factors influencing in the response of Schizolobium parahybum (Vell) Blake to Ceratocystis paradoxa and C. moniliformis. Phyton, International Journal of Experimental Botany, 84(1), 120–127.

Moreira-Morrillo, A. A., Cedeño-Moreira, Ángel V., Canchignia-Martínez, F., & Garcés-Fiallos, F. R. (2021). Lasiodiplodia theobromae (Pat.) Griffon & Maul [(sin.) Botryodiplodia theobromae Pat] en el cultivo de cacao: síntomas, ciclo biológico y estrategias de manejo. Scientia Agropecuaria, 12(4), 653-662.

Ng, J. C. K., & Zhou, J. S. (2015). Insect vector–plant virus interactions associated with non-circulative, semi-persistent transmission: current perspectives and future challenges. Current Opinion in Virology, 15, 48–55.

Pérez-De La Cruz, M., Equihua-Martínez, A., Romero-Nápoles, J., Sánchez-Soto, S., García-López, E., et al. (2009). Escolítidos (Coleoptera: Scolytidae) asociados al agroecosistema cacao en Tabasco, México. Neotropical Entomology, 38(5), 602–609.

Ploetz, R. C. (2007). Cacao diseases: important threats to chocolate production worldwide. Phytopathology, 97(12), 1634–1639.

Pureswaran, D. S., & Sullivan, B. T. (2012). Semiochemical emission from individual galleries of the southern pine beetle, (Coleoptera: Curculionidae: Scolytinae), attacking standing trees. Journal of Economic Entomology, 105(1), 140–148.

Rabaglia, R. J. (2005). The validity of Xyleborus impressus Eichhoff (Coleoptera: Curculionidae: Scolytinae) as distinct from Xyleborus ferrugineus (Fabricius). The Coleopterists Bulletin, 59(2), 261–266.

Raffa, K. F., Hobson, K. R., LaFontaine, S., & Aukema, B. H. (2007). Can chemical communication be cryptic? Adaptations by herbivores to natural enemies exploiting prey semiochemistry. Oecologia, 153(4), 1009–1019.

Raffa, K. F., Andersson, M. N., & Schlyter, F. (2016). Host Selection by Bark Beetles: Playing the Odds in a High-Stakes Game. In C. Tittiger & C. J. Blomquist (Eds.), Advances in Insect Physiology (Vol. 50). Academic Press. 1-74.

Reddy, G. V. P., & Guerrero, A. (2004). Interactions of insect pheromones and plant semiochemicals. Trends in Plant Science, 9(5), 253–261.

Rorer, J. B. (1918). Enfermedades y plagas del cacao en el Ecuador y métodos modernos apropiados al cultivo del cacao. Informe presentado al presidente y miembros de la Asociación de Agricultores del Ecuador.

Roux, J., & Wingfield, M. J. (2009). Ceratocystis species: emerging pathogens of non-native plantation Eucalyptus and Acacia species. Southern Forests: A J. of Forest Science, 71, 115–120.

Sanches, C. L., Pinto, L. R., Pomella, A. W., Silva, S., & Loguercio, L. (2008). Assessment of resistance to Ceratocystis cacaofunesta in cacao genotypes. European Journal of Plant Pathology, 122(4), 517–528.

Santos, R. M. F., Silva, S. D. V. M., Sena, K., Micheli, F., & Gramacho, K. P. (2013). Kinetics and histopathology of the Cacao-Ceratocystis cacaofunesta interaction. Trop. Plant Biol., 6, 37–45.

Schiebe, C., Blaženec, M., Jakuš, R., Unelius, C. R., & Schlyter, F. (2011). Semiochemical diversity diverts bark beetle attacks from Norway spruce edges. Journal of Applied Entomology, 135, 726–737.

Schmidt, O. (2006). Wood and Tree Fungi, Biology, Damage, Protection, and Use (1.a ed.). Springer Publishing. Berlin, Heidelberg. 336 p.

Schowalter, T. D., & Filip, G. M. (1993). Bark beetle-pathogen-conifer interactions: an overview. In Beetle-Pathogen Interactions in Conifer Forests. Academic Press Ltd., London, 3–22.

Silva, S. D. V., Pinto, L. R., Oliveira, B. F., Damaceno, V. O., Pires, J. L., & Dias, C. T. D. S. (2012). Resistência de progênies de cacaueiro à murcha-de-Ceratocystis. Tropical Plant Pathology, 37(3), 191–195.

Smith, S. M., & Hulcr, J. (2015). Scolytus and other Economically Important Bark and Ambrosia Beetles. In F. E. Vega & R. W. Hofstetter (Eds.), Bark Beetles (1a ed.). Elsevier. 495–531.

Soulioti, N., Tsopelas, P., & Woodward, S. (2015). Platypus cylindrus, a vector of Ceratocystis platani in Platanus orientalis stands in Greece. Forest Pathology, 45(5), 367–372.

Spatafora, J. W., & Blackwell, M. (1994). The polyphyletic origins of ophiostomatoid fungi. Mycological Research, 98(1), 1–9.

Sun, Y., Li, M., Wang, Y., Li, L., Wang, M., et al. (2020). Ceratocystis fimbriata employs a unique infection strategy targeting peltate glandular trichomes of sweet potato (Ipomoea batatas) plants. Phytopathology, 110(12),1923-1933.

Syazwan, S. A., Mohd-Farid, A., Wan-Muhd-Azrul, W.-A., Syahmi, H. M., Zaki, A. M., Ong, S. P., & Mohamed, R. (2021). Survey, identification, and pathogenicity of Ceratocystis fimbriata complex associated with wilt disease on Acacia mangium in Malaysia. Forests, 12(12), 1782.

Talboys, P. W. (1972). Resistance to vascular wilt fungi. Proceedings of the Royal Society of London. Series B. Biological Sciences, 181(1064), 319–332.

Teviotdale, B. L. (1991). Infection of pruning and small bark wounds in almond by Ceratocystis fimbriata. Plant Disease, 75(10), 1026.

Tittiger, C., & Blomquist, G. J. (2017). Pheromone biosynthesis in bark beetles. Current Opinion in Insect Science, 24, 68–74.

Wallenius, K. E. (1960). Observations on Xyleborus on cacao and methos of control. In Conferencia Internacional de Cacao, Palmira, Colombia, 1958. Bogotá, Colombia, Ministerio de Agricultura. Pp. 270-273.

Wilken, P. M., Steenkamp, E. T., Wingfield, M. J., de Beer, Z. W., & Wingfield, B. D. (2014). DNA loss at the Ceratocystis fimbriata mating locus results in self-sterility. PloS One, 9(3), e92180.

Wingfield, M. J., Seifert, K. A., & Webber, J. F. (1993). Ceratocystis and Ophiostoma: taxonomy, ecology, and pathogenicity. American Phytopathological Society. 304 p.

Wingfield, B. D., Wyk, M., Roos, H., & Wingfield, M. J. (2013). Ceratocystis: emerging evidence for discrete generic boundaries. CBS Biodiversity Series, 12, 57–64.

Descargas

Publicado

2022-02-28

Cómo citar

Paladines-Rezabala, A. ., Moreira-Morrillo, A. A. ., Mieles, A. E. ., & Garcés-Fiallos, F. R. . (2022). Avances en la comprensión de la interacción entre Ceratocystis cacaofunesta y Xyleborus ferrugineus (Coleoptera: Curculionidae: Scolytinae) en árboles de cacao. Scientia Agropecuaria, 13(1), 43-52. https://doi.org/10.17268/sci.agropecu.2022.004

Número

Sección

Artículos de Revisión

Artículos más leídos del mismo autor/a