Inactivation of Coronaviruses in food industry: The use of inorganic and organic disinfectants, ozone, and UV radiation

Autores/as

  • Roberto Quevedo-León Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Av. Alberto Fuchslocher 1305, Región de los Lagos, Osorno. http://orcid.org/0000-0001-8132-838X
  • José Bastías-Montes Departamento de Ingeniería en Alimentos, Universidad del Bío-Bío, Av. Andres Bello 720, Chillán. http://orcid.org/0000-0003-3387-6917
  • Teófilo Espinoza-Tellez Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Av. Alberto Fuchslocher 1305, Región de los Lagos, Osorno. http://orcid.org/0000-0003-1491-1051
  • Betty Ronceros Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Av. Alberto Fuchslocher 1305, Región de los Lagos, Osorno. http://orcid.org/0000-0002-5851-0340
  • Iván Balic Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Av. Alberto Fuchslocher 1305, Región de los Lagos, Osorno. http://orcid.org/0000-0003-3135-0647
  • Ociel Muñoz Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Región de los Ríos. http://orcid.org/0000-0002-2445-4336

DOI:

https://doi.org/10.17268/sci.agropecu.2020.02.14

Palabras clave:

Covid-19, SARS-CoV, Hypochlorite, Ozone, ultraviolet light, food safety, UV-C Radiation.

Resumen

Currently there is a worldwide pandemic due to Covid-19, which has caused a great impact on humanity in social, economic, psychological aspects and unfortunately on health. Due to the risk that food can also be a medium to cause virus diseases, the procedures in the food industry safety programs must be revised; and, to be more specific, to disinfect Covid-19. Some effective disinfectants that have been proved to inactivate the coronavirus are: chlorine dioxide, sodium hypochlorite, quaternary compound, ozone and UV-C (shortwave ultraviolet light). In this review, some treatments used to inactivate a virus, with an emphasis to the coronavirus family, and other influenza viruses, are reported. It has been concluded that the coronavirus could be inactivated using free chlorine solutions at 30 mg/L, sodium hypochlorite 0.25 %, or Chlorine Dioxide (99% purity) diluted at 1/2.5 relation. Also, alcohol is an effective disinfectant at concentrations of 62 to 71% of ethanol. With respect to the use of the quaternary compound, it can be used at concentrations of 0.10%. Ozone is another promising disinfectant to inactivate the coronavirus and Covid-19. Doses of ozone between 10 to 20 ppm for 10 to 15 minutes are recommended to inactivate the coronavirus with 3.5 log10 reductions. However, a warning should be reported to the use of high doses of exposure because it can be a risk to human health. UV-C can inactivate the coronavirus at a value of 67 J/m2 by 1 to 30 minutes of exposure.

Citas

Alam, M.S.; Takahashi, S.; Ito, M.; et al. 2018. Virucidal Efficacy of a Quaternary Ammonium Compound with Food Additive-Grade Calcium Hydroxide Toward Avian Influenza Virus and Newcastle Disease Virus on Abiotic Carriers. Avian Diseases 62: 355-363.

Becker, S.; Soukup, J.M.; Reed, W.; et al. 1998. Effect of ozone on susceptibility to respiratory viral infection and virus-induced cytokine secretion. Environmental Toxicology and Pharmacology 6: 257-265.

Bodmer, B.S.; Fiedler, A.H.; Hanauer, J.R.H.; et al. 2018. Live-attenuated bivalent measles virus-derived vaccines targeting Middle East respiratory syndrome coronavirus induce robust and multifunctional T cell responses against both viruses in an appropriate mouse model. Virology 521: 99-107.

Boileau, M.J.; Kapil, S. 2010. Bovine coronavirus associated syndromes. Vet Clin North Am Food Anim Pract 26: 123-146.

Brie, A.; Boudaud, N.; Mssihid, A.; et al. 2018. Inactivation of murine norovirus and hepatitis A virus on fresh raspberries by gaseous ozone treatment. Food Microbiology 70: 1-6.

Brons, J.; Bierman, A.; White, R.; et al. 2020. An assessment of a hybrid lighting system that employs ultraviolet-A for mitigating healthcare-associated infections in a newborn intensive care unit. Lighting Research & Technology 0: 1-18.

Camargo, J.A.; Murray, K.; Warriner, K.; et al. 2019. Characterization of efficacy and flow in a commercial scale forced air ozone reactor for decontamination of apples. LWT 113: 108325.

Chumpolbanchorn, K.; Suemanotham, N.; Siripara, N.; et al. 2006. The effect of temperature and UV light on infectivity of avian influenza virus (H5N1, Thai field strain) in chicken fecal manure. Southeast Asian J Trop Med Public Health 37: 102-105.

Clark, K.J.; Grant, P.G.; Sarr, A.B.; et al. 1998. An in vitro study of theaflavins extracted from black tea to neutralize bovine rotavirus and bovine coronavirus infections. Veterinary microbiology 63: 147-157.

Crossley, B.M.; Barr, B.C.; Magdesian; K.G.; et al. 2010. Identification of a novel coronavirus possibly associated with acute respiratory syndrome in alpacas (Vicugna pacos) in California, 2007. Journal of Veterinary Diagnostic Investigation 22: 94-97.

Crowe, K.M.; Skonberg, D.; Bushway, A.; et al. 2012. Application of ozone sprays as a strategy to improve the microbial safety and quality of salmon fillets. Food Control 25: 464-468.

Darnell, M.E.R.; Subbarao, K.; Feinstone, S.M.; et al. 2004. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. Journal of Virological Methods 121: 85-91.

Darnell, M.E.R.; Taylor, D.R. 2006. Evaluation of inactivation methods for severe acute respiratory syndrome coronavirus in noncellular blood products. Transfusion 46: 1770-1777.

Decaro, N. 2011. Alphacoronavirus‡. In "The Springer Index of Viruses" (C. Tidona and G. Darai, eds.), pp. 371-383. Springer New York, New York, NY.

Dellanno, C.; Vega, Q.; Boesenberg, D. 2009. The antiviral action of common household disinfectants and antiseptics againstmurine hepatitis virus, a potential surrogate for SARS coronavirus. American Journal of Infection Control 37: 649-652.

Duan, S.M.; Zhao, X.S.; Wen, R.F.; et al. 2003. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomedical and Environmental Sciences 16: 246-255.

Figueroa, A.; Hauck, R.; Saldias-Rodriguez, J.; et al. 2017. Combination of quaternary ammonia and glutaraldehyde as a disinfectant against enveloped and non-enveloped viruses. Journal of Applied Poultry Research 26: 491-497.

Finch, G.R.; Fairbairn, N. 1991. Comparative inactivation of poliovirus type 3 and MS2 coliphage in demand-free phosphate buffer by using ozone. Appl Environ Microbiol 57: 3121-3126.

Fulton, R.W.; Step, D.L.; Wahrmund, J.; et al. 2011. Bovine coronavirus (BCV) infections in transported commingled beef cattle and sole-source ranch calves. Canadian Journal of Veterinary Research 75: 191-199.

Fusianto, C.; Hick, P.; Becker, J. 2019. Stability of Infectious spleen and kidney necrosis virus and susceptibility to physical and chemical disinfectants. Aquaculture 506: 104-111.

Fuzawa, M.; Araud, E.; Li, J.R.; et al. 2019. Free Chlorine Disinfection Mechanisms of Rotaviruses and Human Norovirus Surrogate Tulane Virus Attached to Fresh Produce Surfaces. Environmental Science & Technology 53: 11999-12006.

Gossner, C.; Danielson, N.; Gervelmeyer, A.; et al. 2016. Human-Dromedary Camel Interactions and the Risk of Acquiring Zoonotic Middle East Respiratory Syndrome Coronavirus Infection. Zoonoses and Public Health 63: 1-9.

Gravemann, U.; Eickmann, M.; Handke, W.; et al. 2018. SARS Coronavirus Is Efficiently Inactivated in Platelet Concentrates by UVC Light Using the Theraflex UV Platelets Technology. Transfusion 58: 240A-240A.

Ha, J.-H.; Choi, C.; Lee, H.-J.; et al. 2016. Efficacy of chemical disinfectant compounds against human norovirus. Food Control 59: 524-529.

Ha, J.-H.; Kim, M.; Choi, C.; et al. 2015. Recovery of structurally intact norovirus from food-contact surfaces. Food control 47: 564-568.

Hall, R.M.; Sobsey, M.D. 1993. Inactivation of Hepatitis a Virus and MS2 by Ozone and Ozone-Hydrogen Peroxide in Buffered Water. Water Science and Technology 27: 371-378.

Hellmér, M.; Paxéus, N.; Magnius, L.; et al. 2014. Detection of pathogenic viruses in sewage provided early warnings of hepatitis A virus and norovirus outbreaks. Applied and environmental microbiology 80: 6771-6781.

Henwood, A.F. 2020. Coronavirus disinfection in histopathology. Journal of Histotechnology 2020: 1734718.

Hirneisen, K.A.; Markland, S.M.; Kniel, K.E. 2011. Ozone inactivation of norovirus surrogates on fresh produce. J Food Prot 74: 836-839.

Hudson, J.B.; Sharma, M.; Vimalanathan, S. 2009. Development of a Practical Method for Using Ozone Gas as a Virus Decontaminating Agent. Ozone: Science & Engineering 31: 216-223.

Ianni, A.; Grotta, L.; Martino, G. 2019. Feeding influences the oxidative stability of poultry meat treated with ozone. Asian-Australasian Journal of Animal Sciences 32: 874-880.

Kampf, G. 2018. Efficacy of ethanol against viruses in hand disinfection. Journal of Hospital Infection 98: 331-338.

Kampf, G. 2020. Potential role of inanimate surfaces for the spread of coronaviruses and their inactivation with disinfectant agents Infection Prevention in Practice 2: 1-5.

Kampf, G.; Todt, D.; Pfaender, S.; et al. 2020. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 104: 246-251.

Khadre, M.A.; Yousef, A.E.; Kim, J.G. 2001. Microbiological aspects of ozone applications in food: A review. Journal of Food Science 66: 1242-1252.

Kim, T.-J. 2018. Prevention of Avian Influenza Virus by Ultraviolet Radiation and Prediction of Outbreak by Satellite Parameters. Journal of Biomedical Science and Engineering 11: 182-206.

Kingsley, D.H.; Perez-Perez, R.E.; Niemira, B.A.; et al. 2018. Evaluation of gaseous chlorine dioxide for the inactivation of Tulane virus on blueberries. International Journal of Food Microbiology 273: 28-32.

Kitajima, M.; Ahmed, W.; Bibby, K.; et al. 2020. SARS-CoV-2 in wastewater: State of the knowledge and research needs. Science of The Total Environment 2020: 139076.

Kowalski, W.; Walsh, T.; Petraitis, V. 2020. 2020 COVID-19 Coronavirus Ultraviolet Susceptibility RG: 22566.

Lee, H.-M.; Yang, J.-S.; Yoon, S.-R.; et al. 2018. Immunomagnetic separation combined with RT-qPCR for evaluating the effect of disinfectant treatments against norovirus on food contact surfaces. LWT 97: 83-86.

Lehmann, M.; Pfahlberg, A.B.; Sandmann, H.; et al. 2019. Public Health Messages Associated with Low UV Index Values Need Reconsideration. International Journal of Environmental Research and Public Health 16(12): 2067.

Leopardi, S.; Terregino, C.; De Benedictis, P. 2020. Silent circulation of coronaviruses in pigs. Veterinary Record 186: 323-323.

Li, X.; Song, Y.H.; Wong, G.; et al. 2020. Bat origin of a new human coronavirus: there and back again. Science China-Life Sciences 63: 461.

Liu, P.; Kim, M.; Schlesinger, D.; et al. 2015. Immunomagnetic separation combined with RT-qPCR for determining the efficacy of disinfectants against human noroviruses. Journal of Infection and Public Health 8: 145-154.

Lopez-Galvez, F.; Randazzo, W.; Vasquez, A.; et al. 2018. Irrigating Lettuce with Wastewater Effluent: Does Disinfection with Chlorine Dioxide Inactivate Viruses? Journal of Environmental Quality 47: 1139-1145.

Mahapatra, A.; Muthukumarappan, K.; Julson, J. 2005. Applications of Ozone, Bacteriocins and Irradiation in Food Processing: A Review. Critical reviews in food science and nutrition 45: 447-61.

Mahfoudh, A.; Moisan, M.; Seguin, J.; et al. 2010. Inactivation of Vegetative and Sporulated Bacteria by Dry Gaseous Ozone. Ozone-Science & Engineering 32: 180-198.

Mamane, H.; Shemer, H.; Linden, K.G. 2007. Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation. J Hazard Mater 146: 479-486.

McDevitt, J.J.; Rudnick, S.N.; Radonovich, L.J. 2012. Aerosol susceptibility of influenza virus to UV-C light. Appl Environ Microbiol 78: 1666-1669.

McKenzie, R.0; Lucas, R. 2018. Reassessing Impacts of Extended Daily Exposure to Low Level Solar UV Radiation. Scientific Reports 8: 13805.

Menachery, V.D.; Dinnon, K.H.; Yount, B.L.; et al. 2020. Trypsin Treatment Unlocks Barrier for Zoonotic Bat Coronavirus Infection. Journal of Virology 94(5): e01774-19.

Miller, F.A.; Silva, C.L.M.; Brandão, T.R.S. 2013. A Review on Ozone-Based Treatments for Fruit and Vegetables Preservation. Food Engineering Reviews 5: 77-106.

Mizzen, L.; Hilton, A.; Cheley, S.; et al. 1985. Attenuation of murine coronavirus infection by ammonium-chloride. Virology 142: 378-388.

Mullis, L.; Saif, L.J.; Zhang, Y.; et al. 2012a. Stability of bovine coronavirus on lettuce surfaces under household refrigeration conditions. Food Microbiol 30: 180-186.

Mullis, L.; Saif, L.J.; Zhang, Y.B.; et al. 2012b. Stability of bovine coronavirus on lettuce surfaces under household refrigeration conditions. Food Microbiology 30: 180-186.

Nayak, S.L.; Sethi, S.; Sharma, R.R.; et al. 2020. Aqueous ozone controls decay and maintains quality attributes of strawberry (Fragaria x ananassa Duch.). Journal of Food Science and Technology-Mysore 57: 319-326.

Neelakantan, P.; Herrera, D.R.; Pecorari, V.G.A.; et al. 2019. Endotoxin levels after chemomechanical preparation of root canals with sodium hypochlorite or chlorhexidine: a systematic review of clinical trials and meta-analysis. Int Endod J 52: 19-27.

Oliveira, T.C.; Abranches, M.V.; Lana, R.M. 2020. Food (in)security in Brazil in the context of the SARS-CoV-2 pandemic. Cad Saude Publica 36: e00055220.

Poletti, V.: Mavilio, F. 2017. Interactions between Retroviruses and the Host Cell Genome. Molecular therapy. Methods & clinical development 8: 31-41.

Rutala, W.; Weber, D. 2015. Disinfection, Sterilization, and Control of Hospital Waste. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases 2: 3294-3309.

Schmidt, A.; Wolff, M.; Weber, O. 2005. Coronaviruses with Special Emphasis on First Insights Concerning SARS. Birkhäuser Basel Editorial. 232 pp.

Sharma, V.K.; Graham, N.J.D. 2010. Oxidation of Amino Acids, Peptides and Proteins by Ozone: A Review. Ozone-Science & Engineering 32: 81-90.

Silva, E.J.N.L.; Prado, M.C.; Soares, D.N.; et al. 2020. The effect of ozone therapy in root canal disinfection: a systematic review. International Endodontic Journal 53: 317-332.

Siqueira, J.F.; Rôças, I.d.N.; Marceliano-Alves, M.F.; et al. 2018. Unprepared root canal surface areas: causes, clinical implications, and therapeutic strategies. Brazilian Oral Research 32(suppl 1): e65.

Tseng, C.-C.; Li, C.-S. 2005. Inactivation of Virus-Containing Aerosols by Ultraviolet Germicidal Irradiation. Aerosol Science and Technology 39: 1136-1142.

van Doremalen, N.; Schafer, A.; Menachery, V.D.; et al. 2018. SARS-Like Coronavirus WIV1-CoV Does Not Replicate in Egyptian Fruit Bats (Rousettus aegyptiacus). Viruses 10(12): 727.

Varga, L.; Szigeti, J. 2016. Use of ozone in the dairy industry: A review. International Journal of Dairy Technology 69: 157-168.

Wang, H.; Sikora, P.; Rutgersson, C.; et al. 2018. Differential removal of human pathogenic viruses from sewage by conventional and ozone treatments. International Journal of Hygiene and Environmental Health 221: 479-488.

Wang, J.; Shen, J.; Ye, D.; et al. 2020. Disinfection technology of hospital wastes and wastewater: Suggestions for disinfection strategy during Coronavirus Disease 2019 (COVID-19) pandemic in China Environmental Pollution 262: 114665.

Weng, J.R.; Lin, C.S.; Lai, H.C.; et al. 2019. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Research 273: 197767.

Wolf, C.; Pavese, A.; von Gunten, U.; et al. 2019. Proxies to monitor the inactivation of viruses by ozone in surface water and wastewater effluent. Water Research 166: 115088.

Woo, P.C.; Huang, Y.; Lau, S.K.; et al. 2010. Coronavirus genomics and bioinformatics analysis. Viruses 2: 1804-1820.

Ye, Y.Y.; Wigginton, K. 2018. Enveloped virus inactivation by UV and chlorine disinfection. Abstracts of Papers of the American Chemical Society 255.

Yuan, Y.; Qi, J.X.; Peng, R.C.; et al. 2020. Molecular Basis of Binding between Middle East Respiratory Syndrome Coronavirus and CD26 from Seven Bat Species. Journal of Virology 94(5): e01387-19.

Zhou, L.; Sun, Y.; Lan, T.; et al. 2019. Retrospective detection and phylogenetic analysis of swine acute diarrhoea syndrome coronavirus in pigs in southern China. Transboundary and Emerging Diseases 66: 687-695.

Zhu, Z.B.; Guo, Y.; Yu, P.; et al. 2019. Chlorine dioxide inhibits the replication of porcine reproductive and respiratory syndrome virus by blocking viral attachment. Infection Genetics and Evolution 67: 78-87.

Publicado

2020-06-08

Cómo citar

Quevedo-León, R., Bastías-Montes, J., Espinoza-Tellez, T., Ronceros, B., Balic, I., & Muñoz, O. (2020). Inactivation of Coronaviruses in food industry: The use of inorganic and organic disinfectants, ozone, and UV radiation. Scientia Agropecuaria, 11(2), 257-266. https://doi.org/10.17268/sci.agropecu.2020.02.14

Número

Sección

Artículos de Revisión

Artículos más leídos del mismo autor/a