Cercospora leaf spot management with nitrogenous fertilizers in cotton is dependent on the disease amount in the plant canopies

Authors

DOI:

https://doi.org/10.17268/sci.agropecu.2024.021

Keywords:

Gossypium hirsutum L., Cercospora sp., Non-linear models progress, Organic and inorganic fertilization, Dose

Abstract

The aim of this study was to examine the impact of both organic and inorganic nitrogen fertilizers on the intensity and epidemiological components of Cercospora leaf spot across three different canopies of cotton plants, specifically the variety DP ACALA 90, under field conditions. Fertilizers used in the study included bovine manure, Jatropha curcas seedcake, poultry manure, and urea (the latter serving as a control). These were applied at 20 days after plant emergence and then during the flowering stage until the total nitrogen (N) dose reached 50, 100, 150, or 200 kg N per hectare. The incidence and severity of the disease were assessed starting at the reproductive stage B1 (the first visible flower bud) across the lower, middle, and upper canopies of four cotton plants, with six evaluations conducted over time. To calculate the initial inoculum (Y0) and the disease progress rate (r), the Exponential, Gompertz, and Logistic models were employed based on temporal data. The study was designed as a randomized complete block with a 4x4 factorial arrangement (fertilizer type x dose), and mean comparisons were made using Tukey's test (p ≤ 0.05). It was found that disease intensity within each canopy level varied in response to the type of nitrogen source and the applied dose, with the severity of the disease (including the area under the disease progress curve) being particularly influenced. A significant interaction between the type of fertilizer and the dose regarding the intensity of Cercospora leaf spot was observed. The Exponential model most accurately depicted the disease's temporal progression. Notably, poultry manure and urea were the fertilizers that most adversely influenced the intensity and initial inoculum (Y0) of Cercospora leaf spot across the various canopies of the cotton plants. The findings suggest that the use of organic fertilizers in cotton cultivation could represent a viable sustainable management strategy.

References

Alves, K., & del Ponte, E. (2020). Analysis and Simulation of Plant Disease Progress Curves. R package version 0.2.0.

Ansell, M. P., & Mwaikamboarti, L.Y. (2009). The structure of cotton and other plant fibres. In Eichhorn, S.J., Hearle, J.W.S., Jaffe, M., & Kikutani, T. (Eds.), Handbook of textile fibre structure (pp. 62-94). Boca Raton, CRC Pres. https://doi.org/10.1533/9781845697310.1.62

Arauz, V., Swift, J., Alvarez, J.M., Henry, A., & Coruzzi, G. M. (2020). A balancing act: how plants integrate nitrogen and water signals. Journal of Experimental Botany, 71(15), 4442–4451. https://doi.org/10.1093/jxb/eraa054

Arriel, N. H. C., Cerón, M., Cardoso, K. C. M., Dileo, P. N., González, C., Hoffmann, L. V., Jiménez, H., Klein, L. M., Lima, M. M. de A., Medina, C., Larrañaga-Monsalve, J. F., Monteros-Altamirano, Á., Muchut, R. J., Paytas, M. J., Rodríguez-Mosquera, M. E., Salgado Funes, E. F., & Spoljaric, M. V. (2023). History and status of local cotton Gossypium spp. in Argentina, Brazil, Colombia and Ecuador. Genetic Resources and Crop Evolution, 70, 2193–2217. https://doi.org/10.1007/s10722-023-01584-x

Ascari, J. P., Mendes, I. R. N., da Silva, V. C., & de Araújo, D. V. (2016). Ramularia leaf spot severity and effects on cotton leaf area and yield. Pesquisa Agropecuaria Tropical, 46(4), 434–441. https://doi.org/10.1590/1983-40632016v4642781

Bakhshi, M., Arzanlou, M., Babai-ahari, A. Groenewald, J. Z., & Crous, P. W. (2018). Novel primers improve species delimitation in Cercospora. IMA Fungus, 9, 299–332. https://doi.org/10.5598/imafungus.2018.09.02.06

Bellaloui, N., Turley, R. B., & Stetina, S. R. (2021) Cottonseed protein, oil, and minerals in cotton (Gossypium hirsutum L.) lines differing in curly leaf morphology. Plants, 10, 525. https://doi.org/10.3390/plants10030525

Berger, R. D. (1981). Comparison of the Gompertz and Logistic equations to describe plant disease progress. Phytopathology, 71, 716–719. https://doi.org/10.1094/phyto-71-716

Bondada, B. R., & Oosterhuis, D. M. (2001). Canopy photosynthesis, specific leaf weight, and yield components of cotton under varying nitrogen supply. Journal of Plant Nutrition, 24(3), 469–477. https://doi.org/dx.doi.org/10.1081/PLN-100104973

Cantonwine, E. G., Culbreath, A. K., & Stevenson, K. L. (2007). Characterization of early leaf spot suppression by strip tillage in peanut. Phytopathology, 97, 187–194. https://doi.org/10.1094/PHYTO-97-2-0187

Cañarte-Bermúdez, E., Sotelo-Proaño, R., & Navarrete-Cedeño, B. (2020). Generación de tecnologías para incrementar la productividad del algodón Gossypium hirsutum L. en Manabí, Ecuador. Ciencia UNEMI, 13(33), 85-95. https://doi.org/10.29076/issn.2528-7737vol13iss33.2020pp85-95p

Chávez-García, W.R., Mera-Vera, F.N., Portalanza, D., & Garcés-Fiallos, F.R. (2022). Temporal progress of web blight in three common bean genotypes on the central coast of Ecuador. Revista Bionatura, 7(1), 35. http://dx.doi.org/10.21931/RB/2022.07.01.35

Chen, J., Liu, L., Wang, Z., Sun, H., Zhang, Y., Bai, Z., Song, S., Lu, Z., & Li, C. (2019). Nitrogen fertilization effects on physiology of the cotton boll–leaf system. Agronomy, 9(6): 271. https://doi.org/10.3390/agronomy9060271

Chen, J., Liu, L., Wang, Z., Zhang, Y., Sun, H., Song, S., Bai, Z., Lu, Z., & Li, C. (2020). Nitrogen fertilization increases root growth and coordinates the root-shoot relationship in cotton. Frontiers in Plant Science, 11, 880. https://doi.org/10.3389/fpls.2020.00880

Das, P. P., Singh, K. R., Nagpure, G., Mansoori, A., Singh, R. P., Ghazi, I. A., Kumar, A., & Singh, J. (2022). Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environmental Research, 214(Pt 1), 113821. https://doi.org/10.1016/j.envres.2022.113821

Devi, S., Sharma, C. R., & Singh, K. (2012). Microbiological biodiversity in poultry and paddy straw wastes in composting systems. Brazilian Journal of Microbiology, 43(1), 288–296. https://doi.org/10.1590/S1517-838220120001000034

Dhawan, N., Kukreja, V., Sharma, R., Gupta A., & Singh, V. (2023). Exploiting hybrid CNN and RF for detailed disease classification of cotton leaf spot: A trek from image pixels to increased accuracy. 2023 4th IEEE Global Conference for Advancement in Technology, GCAT, 1–5, https://doi.org/10.1109/GCAT59970.2023.10353378

Echer, F. R., Cordeiro, C. F. dos S., & de la Torre, E. de J. R. (2020). The effects of nitrogen, phosphorus, and potassium levels on the yield and fiber quality of cotton cultivars. Journal of Plant Nutrition, 43(7), 921–932. https://doi.org/10.1080/01904167.2019.1702204

Fang, D. D. (2018). General description of cotton. In Fang, D. (Ed.), Cotton Fiber: Physics, Chemistry and Biology (pp. 1–11). Springer.

Fischer, I. H., Silva, L. M. da, Amorim, L., Galli, J. A., & Parisi, M. C. M. (2021). Response of Cucumber cultivars to target spot based on epidemiological components of the disease monocycle. Journal of Phytopathology, 169(7-8), 419–428. https://10.1111/jph.12998

Fresenius, G. (1863). Beiträge zur Mykologie. Vol. 3. Frankfurt: H.L. Brönner.

Garcés-Fiallos, F. R., Guamán-Anchundia, R. E., Bozada-Véliz, J. J., & Díaz-Coronel, G. (2014). Características agronómicas y sanidad de germoplasma promisorio de maní (Arachis hypogaea L.) en Quevedo, Ecuador. Acta Agronómica, 63(4), 318–325. https://doi.org/10.15446/acag.v63n4.43080

García, F., Suárez-Duque, D., & Rodríguez, W. (2019) Importancia social del cultivo de algodón en la agricultura familiar campesina de Guayas y Manabí en Ecuador. In Congresso Brasileiro do Algodão.

Huang, J., Li, H., & Yuan, H. (2006). Effect of organic amendments on Verticillium wilt of cotton. Crop Protection, 25, 1167–1173. https://doi.org/10.1016/j.cropro.2006.02.014

Krouk, G., & Kiba, T. (2020). Nitrogen and phosphorus interactions in plants: from agronomic to physiological and molecular insights. Current Opinion in Plant Biology, 57, 104–109. https://doi.org/10.1016/j.pbi.2020.07.002

Mur, L. A. J., Simpson, C., Kumari, A., Gupta, A. K., & Gupta, K. J. (2017). Moving nitrogen to the centre of plant defence against pathogens. Annals of Botany, 119(5), 703–709. https://doi.org/10.1093/aob/mcw179

Palma-Zambrano, O. J., Zambrano-Gavilanes, F., Portalanza, D., & Garcés-Fiallos, F.R. (2022). Ramularia leaf spot and Boll rot are affected differently by organic and inorganic nitrogen fertilization in cotton plants. Bioscience Journal, 38, e38077. https://doi.org/10.14393/BJ-v38n0a2022-61479

Puia, J. D., Martins, B. R., Borsato, L. C., & Vigo, S. C. (2021). Comportamento diferencial de linhagens de algodão a Cercospora gossypina. Nativa, 9(2), 163–166. https://doi.org/10.31413/nativa.v9i2.10834

RStudio Team. (2017). RStudio (1.0.136). Integrated Development for R. RStudio.

Salem, R. T. A., Thompson, K., & Uttamlal, M. (2022). Bleaching cotton in textile conservation: a closer look using atomic force microscopy. Heritage Science, 10, 195. https://doi.org/10.1186/s40494-022-00830-2

Saude, C., McDonald, M. R., & Westerveld, S. (2014). Nitrogen and fungicide applications for the management of fungal blights of carrot. HortScience, 49(5), 608-614. https://doi.org/10.21273/HORTSCI.49.5.608

Scudlark, J. R., Jennings, J. A., Roadman, M. J., Savidge, K. B., & Ullman, W. J. (2005). Atmospheric nitrogen inputs to the Delaware Inland Bays: the role of ammonia. Environmental pollution, 135(3), 433–443. https://doi.org/10.1016/j.envpol.2004.11.017

Shah, A. N., Wu, Y., Tanveer, M., Hafeez, A., Tung, S. A., Ali, S., Khalofah, A., Alsubeie, M. S., Al-Qthanin, R. N., & Yang, G. (2021). Interactive effect of nitrogen fertilizer and plant density on photosynthetic and agronomical traits of cotton at different growth stages. Saudi Journal of Biological Sciences, 28(6), 3578–3584. https://doi.org/10.1016/j.sjbs.2021.03.034

Sharma, O. P., & Bambawale, O. M. (2008). Integrated management of key diseases of cotton and rice. In Ciancio, A., & Mukerji, K. (Eds) Integrated Management of Diseases Caused by Fungi, Phytoplasma and Bacteria (pp. 271–302), vol 3. Springer Science+Business Media B.V. https://doi.org/10.1007/978-1-4020-8571-0_14

Sión, F., Castro, L., Arroyave, J., & Toro, J. (1992). Manual del cultivo del algodón. Manabí-Portoviejo: Instituto Nacional de Investigaciones Agropecuarias del Ecuador.

Tjørve, K.M.C., & Tjørve, E. (2017). The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS ONE, 12(6), e0178691. https://doi.org/10.1371/journal.pone.0178691

Veromann, E., Toome M., Kanaste A., Kaasik R., Copolovici L., Flink J., Kovacs G., Narits L., Luik A., & Niinemets U. (2013). Effects of nitrogen fertilization on insect pests, their parasitoids, plant diseases and volatile organic compounds in Brassica napus. Crop Protection, 43, 79–88. https://doi.org/10.1016/j.cropro.2012.09.001

Xu, W., Li, J., Feng, J., Shao, Z., Huang, Y., Hou, W., & Gao, Q. (2023). Nitrogen and potassium interactions optimized asynchronous spikelet filling and increased grain yield of japonica rice. PeerJ, 11, e14710. https://doi.org/10.7717/peerj.14710

Zheng, J., Kilasara, M.M., Mmari, W.N., & Funakawa, S. (2018). Ammonia volatilization following urea application at maize fields in the East African highlands with different soil properties. Biology and Fertility of Soils, 54, 411–422. https://doi.org/10.1007/s00374-018-1270-0

Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & van 't Riet, K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56(6), 1875–1881. https://doi.org/10.1128/aem.56.6.1875-1881

Downloads

Published

2024-05-13

How to Cite

Parrales-Rodríguez, V. F. ., Zambrano-Gavilanes, F. ., Portalanza, D. ., & Garcés-Fiallos, F. R. . (2024). Cercospora leaf spot management with nitrogenous fertilizers in cotton is dependent on the disease amount in the plant canopies. Scientia Agropecuaria, 15(2), 279-288. https://doi.org/10.17268/sci.agropecu.2024.021

Issue

Section

Original Articles