The frequency range in THz spectroscopy and its relationship to the water content in food: A first approach

Autores/as

DOI:

https://doi.org/10.17268/sci.agropecu.2021.066

Palabras clave:

rapid relaxation, high frequency, terahertz spectroscopy, frequency range, food water content

Resumen

The objective of this review is to report on the progress made so far in the development of THz spectroscopy technology with application in the food industry, as well as, to evaluate the range of frequencies used by this technology in relation to the water content of food, to find patterns in which the physicochemical characterization of food samples is most effective. From the literature reviewed, it has been found that THz spectroscopy is still in constant development, both in the physical part of the equipment and in the data processing techniques. Despite these advances, the frequency ranges in which the identification of compounds are influenced by the interference of the water composition of food have not been clearly identified, even molecular behavior of water in the frequency ranges corresponding to the spectral band of THz is still little known. When performing a meta-analysis of the data specifying the frequency ranges in relation to the water content of food samples, reported in the literature, two intervals have been identified, where the action of THz waves have a better response in terms of the quantification of water, as well as of other compounds, which are mainly evidenced in lower water content, explained by the mechanisms of water relaxation in response to the interaction of THz waves. This result suggests that the influence of water content on the quantification of compounds should be considered, as it may be under or overestimated.

Citas

Afsah-Hejri, L., Akbari, E., Toudeshki, A., Homayouni, T., Alizadeh, A., & Ehsani, R. (2020). Terahertz spectroscopy and imaging: A review on agricultural applications. Computers and Electronics in Agriculture, 177, 105628.

Afsah‐Hejri, L., Hajeb, P., Ara, P., & Ehsani, R. J. (2019). A Comprehensive Review on Food Applications of Terahertz Spectroscopy and Imaging. Comprehensive Reviews in Food Science and Food Safety, 18(5), 1563-1621.

Anowar, F., Sadaoui, S., & Selim, B. (2021). Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Computer Science Review, 40, 100378.

Badaró, A. T., Morimitsu, F. L., Ferreira, A. R., Clerici, M. T. P. S., & Fernandes, D. (2019). Identification of fiber added to semolina by near infrared (NIR) spectral techniques. Food Chemistry, 289, 195-203.

Borovkova, M., Khodzitsky, M., Popov, A., Bykov, A., & Meglinski, I. (2017). Assessment of water content in biological samples by terahertz time-domain spectroscopy (A. Amelink & I. A. Vitkin, Eds.; p. 104130R).

Castro, W., Oblitas, J., De-La-Torre, M., Cotrina, C., Bazan, K., & Avila-George, H. (2019). Classification of Cape Gooseberry Fruit According to its Level of Ripeness Using Machine Learning Techniques and Different Color Spaces. IEEE Access, 7, 27389-27400.

Catapano, I., & Soldovieri, F. (2019). Chapter 11 - THz imaging and data processing: State of the art and perspective. En R. Persico, S. Piro, & N. Linford (Eds.), Innovation in Near-Surface Geophysics (pp. 399-417). Elsevier.

Chen, Q., Jia, S., Qin, J., Du, Y., & Zhao, Z. (2020). A Feasible Approach to Detect Pesticides in Food Samples Using THz-FDS and Chemometrics. Journal of Spectroscopy, 2020, 1-10.

Cheng, J., Tang, C., Li, X., Hu, J., & Lü, J. (2020). Hydrogen molecules can modulate enzymatic activity and structural properties of pepsin in vitro. Colloids and Surfaces B: Biointerfaces, 189, 110856.

Cherkasova, O. P., Nazarov, M. M., Konnikova, M., & Shkurinov, A. P. (2020). THz Spectroscopy of Bound Water in Glucose: Direct Measurements from Crystalline to Dissolved State. Journal of Infrared, Millimeter, and Terahertz Waves, 41(9), 1057-1068.

Dhillon, S. S., Vitiello, M. S., Linfield, E. H., Davies, A. G., Hoffmann, M. C., et al. (2017). The 2017 terahertz science and technology roadmap. Journal of Physics D: Applied Physics, 50(4), 043001.

Dorney, T. D., Baraniuk, R. G., & Mittleman, D. M. (2001). Material parameter estimation with terahertz time-domain spectroscopy. JOSA A, 18(7), 1562-1571.

Fan, S., Wallace, V., & Qian, Z. (2018). Hydration of gelatin molecules studied with terahertz time-domain spectroscopy. En X.-C. Zhang, M. Tani, & C. Zhang (Eds.), Infrared, Millimeter-Wave, and Terahertz Technologies V (p. 4). SPIE.

Fawole, O., & Tabib-Azar, M. (2016). Terahertz quantification of ethanol and sugar concentrations in water and its application for noninvasive real-time monitoring of fermentation. 2016 IEEE MTT-S International Microwave Symposium (IMS), 1-4.

Feng, C.-H., & Otani, C. (2021). Terahertz spectroscopy technology as an innovative technique for food: Current state-of-the-Art research advances. Critical Reviews in Food Science and Nutrition, 61(15), 2523-2543.

Firmani, P., Nardecchia, A., Nocente, F., Gazza, L., Marini, F., & Biancolillo, A. (2020). Multi-block classification of Italian semolina based on Near Infrared Spectroscopy (NIR) analysis and alveographic indices. Food Chemistry, 309, 125677.

Gowen, A. A., O’Sullivan, C., & O’Donnell, C. P. (2012). Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control. Trends in Food Science & Technology, 25(1), 40-46.

Han, S.-T. (2020). Application of a Compact Sub-Terahertz Gyrotron for Nondestructive Inspections. IEEE Transactions on Plasma Science, 48(9), 3238-3245.

Dominguez, E., Cruz-Lopez, E., Reyes-Nava, J. A., Conde, J., Briones, E., & Vilchis, H. (2018). First Principles for Evaluation of the Moisture Content in Mango Slice by Tera-Hertz Pulses. 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 1-4.

Heugen, U., Schwaab, G., Bründermann, E., Heyden, M., Yu, X., Leitner, D. M., & Havenith, M. (2006). Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy. Proceedings of the National Academy of Sciences, 103(33), 12301-12306.

Hindle, F., Kuuliala, L., Mouelhi, M., Cuisset, A., Bray, C., et al. (2018). Monitoring of food spoilage by high resolution THz analysis. The Analyst, 141(1), 100-110.

Huang, L., Li, C., Li, B., Liu, M., Lian, M., & Yang, S. (2020). Studies on qualitative and quantitative detection of trehalose purity by terahertz spectroscopy. Food Science & Nutrition, 8(4), 1828-1836.

Jeong, J.-Y., Jang, J., Patra, A., Eom, K., Park, I., et al. (2017). Is fast relaxation water really a free water? 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-2.

Jiang, Y., Ge, H., & Zhang, Y. (2019). Detection of foreign bodies in grain with terahertz reflection imaging. Optik, 181, 1130-1138.

Jiang, Y., Ge, H., & Zhang, Y. (2020). Quantitative analysis of wheat maltose by combined terahertz spectroscopy and imaging based on Boosting ensemble learning. Food Chemistry, 307, 125533.

Karaliūnas, M., Nasser, K. E., Urbanowicz, A., Kašalynas, I., Bražinskienė, D., Asadauskas, S., & Valušis, G. (2018). Non-destructive inspection of food and technical oils by terahertz spectroscopy. Scientific Reports, 8(1), 18025.

Khaliduzzaman, A., Konagaya, K., Suzuki, T., Kashimori, A., Kondo, N., & Ogawa, Y. (2020). A Nondestructive Eggshell Thickness Measurement Technique Using Terahertz Waves. Scientific Reports, 10(1), 1052.

Kim, G., Lee, S. D., Moon, J. H., Kim, K. B., & Lee, D. K. (2012). Terahertz technology for the detection of food contaminants. 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves, 1-2.

Li, C., Li, B., & Ye, D. (2020). Analysis and Identification of Rice Adulteration Using Terahertz Spectroscopy and Pattern Recognition Algorithms. IEEE Access, 8, 26839-26850.

Li, P., Zhang, Y., & Ge, H. (2017). Terahertz spectral detection of potassium sorbate in milk powder (C. Zhang & A. Asundi, Eds.; p. 102560A).

Liang, Q., Maocheng, Z., Jie, Z., & Yuweiyi, T. (2019). Preliminary investigation of Terahertz spectroscopy to predict pork freshness non-destructively. Food Science and Technology, 39(suppl 2), 563-570.

Liu, J., Mao, L., Ku, J., Peng, H., Lao, Z., Chen, D., & Yang, B. (2017). Using terahertz spectroscopy to identify transgenic cottonseed oil according to physicochemical quality parameters. Optik, 142, 483-488.

Liu, W., Zhang, Y., Li, M., Han, D., & Liu, W. (2020). Determination of invert syrup adulterated in acacia honey by terahertz spectroscopy with different spectral features. Journal of the Science of Food and Agriculture, 100(5), 1913-1921.

Liu, W., Zhao, P., Wu, C., Liu, C., Yang, J., & Zheng, L. (2019). Rapid determination of aflatoxin B1 concentration in soybean oil using terahertz spectroscopy with chemometric methods. Food Chemistry, 293, 213-219.

Lu, S., Zhang, X., Zhang, Z., Yang, Y., & Xiang, Y. (2016). Quantitative measurements of binary amino acids mixtures in yellow foxtail millet by terahertz time domain spectroscopy. Food Chemistry, 211, 494-501.

Ma, Y., Huang, H., Hao, S., Qiu, K., Gao, H., et al. (2019). Insights into the water status in hydrous minerals using terahertz time-domain spectroscopy. Scientific Reports, 9(1), 9265.

Maamar, N., Lazoul, M., Latreche, F. Y., Trache, D., & Coutaz, J.-L. (2020). Terahertz time-domain spectroscopy characterization of nitrocellulose in transmission and reflection configurations. Optik, 224, 165711.

Malcolm, G. P. A., Walsh, D. A., & Chateauneuf, M. (2014). Physics and Applications of T-Rays. En M. Perenzoni & D. J. Paul (Eds.), Physics and Applications of Terahertz Radiation (pp. 149-175). Springer Netherlands.

Møller, U., Cooke, D. G., Tanaka, K., & Jepsen, P. U. (2009). Terahertz reflection spectroscopy of Debye relaxation in polar liquids [Invited]. JOSA B, 26(9), A113-A125.

Oh, G.-H., Kim, H.-S., Park, D.-W., & Kim, H.-S. (2020). In-situ monitoring of moisture diffusion process for wood with terahertz time-domain spectroscopy. Optics and Lasers in Engineering, 128, 106036.

Ren, A., Zahid, A., Ali Imran, M., Alomainy, A., & Abbasi, Q. H. (2019). Introducing a Novel Technique of Detecting Fruits Contaminations Using Terahertz Sensing. 2019 International Workshop on Antenna Technology (IWAT), 58-61.

Ren, A., Zahid, A., Fan, D., Imran, M. A., Alomainy, A., & Abbasi, Q. H. (2019). Establishing A Novel Technique for the Detection of Water Contamination Using Terahertz Waves. 2019 IEEE MTT-S International Wireless Symposium (IWS), 1-3.

Ren, A., Zahid, A., Imran, M. A., Alomainy, A., Fan, D., & Abbasi, Q. H. (2019). Terahertz Sensing for Fruit Spoilage Monitoring. 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS), 1-4.

Ren, A., Zahid, A., Zoha, A., Shah, S. A., Imran, M. A., Alomainy, A., & Abbasi, Q. H. (2020). Machine Learning Driven Approach Towards the Quality Assessment of Fresh Fruits Using Non-Invasive Sensing. IEEE Sensors Journal, 20(4), 2075-2083.

Salén, P., Basini, M., Bonetti, S., Hebling, J., Krasilnikov, M., et al. (2019). Matter manipulation with extreme terahertz light: Progress in the enabling THz technology. Physics Reports, 836-837, 1-74.

Shin, H. J., Choi, S.-W., & Ok, G. (2018). Qualitative identification of food materials by complex refractive index mapping in the terahertz range. Food Chemistry, 245, 282-288.

Shin, H. J., Park, J. H., Lim, E.-K., Kim, H. M., Huh, Y.-M., et al. (2019). Study of the Drying Kinetics of a Hyaluronic Acid Pellet by Using Terahertz Time-Domain Spectroscopy. Journal of the Korean Physical Society, 75(11), 895-898.

Singh, A. K., Pérez-López, A. V., Simpson, J., & Castro-Camus, E. (2020). Three-dimensional water mapping of succulent Agave victoriae-reginae leaves by terahertz imaging. Scientific Reports, 10(1), 1404.

Smolyanskaya, O. A., Chernomyrdin, N. V., Konovko, A. A., Zaytsev, K. I., Ozheredov, I. A., et al. (2018). Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Progress in Quantum Electronics, 62, 1-77.

Sun, X., & Liu, J. (2020). Measurement of Plumpness for Intact Sunflower Seed Using Terahertz Transmittance Imaging. Journal of Infrared, Millimeter, and Terahertz Waves, 41(3), 307-321.

Sun, X., Zhu, K., Liu, J., Hu, J., Jiang, X., Liu, Y., & Gong, Z. (2019). Terahertz Spectroscopy Determination of Benzoic Acid Additive in Wheat Flour by Machine Learning. Journal of Infrared, Millimeter, and Terahertz Waves, 40(4), 466-475.

Sun, Y., Liu, N., Kang, X., Zhao, Y., Cao, R., Ning, J., Ding, H., Sheng, X., & Zhou, D. (2021). Rapid identification of geographical origin of sea cucumbers Apostichopus japonicus using FT-NIR coupled with light gradient boosting machine. Food Control, 124, 107883.

Tielrooij, K. J., Paparo, D., Piatkowski, L., Bakker, H. J., & Bonn, M. (2009). Dielectric Relaxation Dynamics of Water in Model Membranes Probed by Terahertz Spectroscopy. Biophysical Journal, 97(9), 2484-2492.

Tonouchi, M. (2007). Cutting-edge terahertz technology. Nature Photonics, 1(2), 97-105.

Ung, B. S.-Y., Fischer, B. M., Ng, B. W.-H., & Abbott, D. (2007). Towards quality control of food using terahertz. BioMEMS and Nanotechnology III, 6799, 67991E.

Wang, C., Zhou, R., Huang, Y., Xie, L., & Ying, Y. (2019). Terahertz spectroscopic imaging with discriminant analysis for detecting foreign materials among sausages. Food Control, 97, 100-104.

Wang, K., Sun, D.-W., & Pu, H. (2017). Emerging non-destructive terahertz spectroscopic imaging technique: Principle and applications in the agri-food industry. Trends in Food Science & Technology, 67, 93-105.

Wang, Q., Hameed, S., Xie, L., & Ying, Y. (2020a). Non-destructive quality control detection of endogenous contaminations in walnuts using terahertz spectroscopic imaging. Journal of Food Measurement and Characterization, 14(5), 2453-2460.

Wang, Y., Zhao, Z., Qin, J., Liu, H., Liu, A., & Xu, M. (2020a). Rapid in situ analysis of l-histidine and α-lactose in dietary supplements by fingerprint peaks using terahertz frequency-domain spectroscopy. Talanta, 208, 120469.

Wei, X., Zheng, W., Zhu, S., Zhou, S., Wu, W., & Xie, Z. (2020). Application of terahertz spectrum and interval partial least squares method in the identification of genetically modified soybeans. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 238, 118453.

Wilke, I. (2017). Terahertz Spectroscopy Applications. En P. Worsfold, C. Poole, A. Townshend, & M. Miró (Eds.), Encyclopedia of Analytical Science (Third Edition) (pp. 1-5). Academic Press.

Wu, H., & Khan, M. (2012). THz spectroscopy: An emerging technology for pharmaceutical development and pharmaceutical Process Analytical Technology (PAT) applications. Journal of Molecular Structure, 1020, 112-120.

Yada, H., Nagai, M., & Tanaka, K. (2008). Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy. Chemical Physics Letters, 464(4), 166-170.

Yan, L., Liu, C., Qu, H., Liu, W., Zhang, Y., Yang, J., & Zheng, L. (2018). Discrimination and Measurements of Three Flavonols with Similar Structure Using Terahertz Spectroscopy and Chemometrics. Journal of Infrared, Millimeter, and Terahertz Waves, 39(5), 492-504.

Yi̇Yen, G. (2018). Wine quality testing by using terahertz spectroscopy. Middle East Technical University.

Yoneyama, H., Yamashita, M., Kasai, S., Ito, H., & Ouchi, T. (2006). Application of Terahertz Spectrum in the Detection of Harmful Food Additives. 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, 506-506.

Yoon, S. A., Cha, S. H., Jun, S. W., Park, S. J., Park, J.-Y., et al. (2019). Identifying different types of microorganisms with terahertz spectroscopy. Biomedical Optics Express, 11(1), 406-416.

Zhang, B., Li, S., Wang, C., Zou, T., Pan, T., et al. (2018). Terahertz spectroscopic investigation of gallic acid and its monohydrate. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 190, 40-46.

Zhao, H., Tan, Y., Zhang, L., Zhang, R., Shalaby, M., et al. (2020). Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence. Light: Science & Applications, 9(1), 136.

Zhao, R., Zhang, C., Xu, D., & Yang, Y. (2019). Detection of aflatoxin B1 and B2 using terahertz meta-biosensor. 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-2.

Zhong, J., Mori, T., Kashiwagi, T., Yamashiro, M., Kusunose, S., et al. (2021). Characteristic terahertz absorption spectra of paramylon and paramylon-ester compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 244, 118828.

Publicado

2021-12-15

Cómo citar

Arteaga, H., León-Roque, N., & Oblitas, J. (2021). The frequency range in THz spectroscopy and its relationship to the water content in food: A first approach. Scientia Agropecuaria, 12(4), 625-634. https://doi.org/10.17268/sci.agropecu.2021.066

Número

Sección

Artículos de Revisión

Artículos más leídos del mismo autor/a