Identification of flavonoids by HPLC-MS in fruit waste of Latin America: A systematic review
DOI:
https://doi.org/10.17268/sci.agropecu.2023.014Palabras clave:
flavonoids, High Performance Liquid Chromatography-Mass Spectrometry, fruit waste, detection technique, Latin AmericaResumen
Fruit waste is rich in phenolic compounds, including flavonoids with pharmacological potential for health, nutraceutical and technological properties. To characterize them, High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) was used, used for its high separation efficiency by HPLC and structural information from MS, a technique that allows analyzing a wide range of analytes in plant matrices. This study aims was to perform a systematic analysis based in SCOPUS of scientific productions of studies on techniques for detection and identification of flavonoids by HPLC-MS in fruit waste available in Latin America, between the years 2010-2022. Thus, the countries with the highest scientific production are Brazil (58.9%), Mexico (16.1%), Chile (9.2%), Argentina (7.1%) and Colombia (3.8%). There were also studies in collaboration with researchers from the USA and Europe. A total of 15.1% of the studies used HPLC-MS for determining these compounds, generally related to by-products of native or non-traditional fruits. It is known that agro-industrial waste matrices are chemically complex, being necessary analytical techniques such as HPLC-MS, which awakens interest for their study and the possibility of being isolated from vegetable by-products such as fruits. This is a green technology alternative to achieve sustainable use of this waste and be exploited by the food industry.
Citas
Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200–214. https://doi.org/10.1016/j.crfs.2021.03.011
Albuquerque, T. G., Santos, F., Sanches-Silva, A., Beatriz Oliveira, M., Bento, A. C., & Costa, H. S. (2016). Nutritional and phytochemical composition of Annona cherimola Mill. fruits and by-products: Potential health benefits. Food Chemistry, 193, 187–195. https://doi.org/10.1016/j.foodchem.2014.06.044
Al-Zoreky, N. S. (2009). Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. International Journal of Food Microbiology, 134(3), 244–248. https://doi.org/10.1016/j.ijfoodmicro.2009.07.002
Asif, A., Farooq, U., Akram, K., Hayat, Z., Shafi, A., Sarfraz, F., Sidhu, M. A. I., Rehman, H. U., & Aftab, S. (2016). Therapeutic potentials of bioactive compounds from mango fruit wastes. Trends in Food Science and Technology, 53, 102–112. https://doi.org/10.1016/j.tifs.2016.05.004
Ayala-Zavala, J. F., Vega-Vega, V., Rosas-Domínguez, C., Palafox-Carlos, H., Villa-Rodriguez, J. A., Siddiqui, M. W., Dávila-Aviña, J. E., & González-Aguilar, G. A. (2011). Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Research International, 44(7), 1866–1874. https://doi.org/10.1016/j.foodres.2011.02.021
Ballesteros-Vivas, D., Álvarez-Rivera, G., del Pilar Sánchez-Camargo, A., Ibáñez, E., Parada-Alfonso, F., & Cifuentes, A. (2019). A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography / gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 1: Withanolides-rich fractions from golde. Journal of Chromatography A, 1584, 155–164. https://doi.org/10.1016/j.chroma.2018.11.055
Ballesteros-Vivas, D., Alvarez-Rivera, G., Ibánez, E., Parada-Alfonso, F., & Cifuentes, A. (2019). Integrated strategy for the extraction and profiling of bioactive metabolites from Passiflora mollissima seeds combining pressurized-liquid extraction and gas/liquid chromatography–high resolution mass spectrometry. Journal of Chromatography A, 1595, 144–157. https://doi.org/10.1016/j.chroma.2019.02.031
Ballesteros-Vivas, D., Álvarez-Rivera, G., Morantes, S. J., Sánchez-Camargo, A. del P., Ibáñez, E., Parada-Alfonso, F., & Cifuentes, A. (2019). An integrated approach for the valorization of mango seed kernel: Efficient extraction solvent selection, phytochemical profiling and antiproliferative activity assessment. Food Research International, 126. https://doi.org/10.1016/j.foodres.2019.108616
Barbosa, P. de P. M., Ruviaro, A. R., & Macedo, G. A. (2018). Comparison of different Brazilian citrus by-products as source of natural antioxidants. Food Science and Biotechnology, 27(5), 1301–1309. https://doi.org/10.1007/s10068-018-0383-4
Barfi, B., Asghari, A., Rajabi, M., Barfi, A., &Saeidi, I. (2013). Simplified miniaturized ultrasound-assisted matrix solid phase dispersion extraction and high performance liquid chromatographic determination of seven flavonoids in citrus fruit juice and human fluid samples: Hesperetin and naringenin as biomarkers. Journal of Chromatography A, 1311, 30–40. https://doi.org/10.1016/j.chroma.2013.08.078
Barros, R. G. C., Andrade, J. K. S., Denadai, M., Nunes, M. L., & Narain, N. (2017). Evaluation of bioactive compounds potential and antioxidant activity in some Brazilian exotic fruit residues. Food Research International, 102, 84–92. https://doi.org/10.1016/j.foodres.2017.09.082
Batista, Â. G., da Silva, J. K., BetimCazarin, C. B., Biasoto, A. C. T., Sawaya, A. C. H. F., Prado, M. A., & Maróstica Júnior, M. R. (2017). Red-jambo (Syzygiummalaccense): Bioactive compounds in fruits and leaves. LWT - Food Science and Technology, 76, 284–291. https://doi.org/10.1016/j.lwt.2016.05.013
Bloor, S. (2001). Overview of methods for analysis and identification of flavonoids. Methods in enzymology, 335, 3–14. https://doi.org/10.1016/S0076-6879(01)35227-8.
Colombo, R., Lanças, F. M., Yariwake, J. H. (2006). Determination of flavonoids in cultivated sugarcane leaves, bagasse, juice and in transgenic sugarcane by liquid chromatography-UV detection. J Chromatogr A, 1103(1), 118-24. https://doi.org/10.1016/j.chroma.2005.11.007.
da Silva, A. P. G., Spricigo, P. C., Purgatto, E., de Alencar, S. M., Sartori, S. F., & Jacomino, A. P. (2019). Chemical composition, nutritional value and bioactive compounds in six uvaia accessions. Food Chemistry, 294, 547–556. https://doi.org/10.1016/j.foodchem.2019.04.121
Da Silva, G. G., Pimenta, L. P. S., Melo, J. O. F., Mendonça, H. de O. P., Augusti, R., & Takahashi, J. A. (2022). Phytochemicals of Avocado Residues as Potential Acetylcholinesterase Inhibitors, Antioxidants, and Neuroprotective Agents. Molecules, 27(6). https://doi.org/10.3390/molecules27061892
Da Silva, J. K., Batista, Â. G., Cazarin, C. B. B., Dionísio, A. P., de Brito, E. S., Marques, A. T. B., & Maróstica Junior, M. R. (2017). Functional tea from a Brazilian berry: Overview of the bioactives compounds. LWT - Food Science and Technology, 76, 292–298. https://doi.org/10.1016/j.lwt.2016.06.016
Da Silva, L. M. R., de Figueiredo, E. A. T., Ricardo, N. M. P. S., Vieira, I. G. P., de Figueiredo, R. W., Brasil, I. M., & Gomes, C. L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry, 143, 398–404. https://doi.org/10.1016/j.foodchem.2013.08.001
Da Silva Sauthier, M. C., da Silva, E. G. P., da Silva Santos, B. R., Silva, E. F. R., da Cruz Caldas, J., Cavalcante Minho, L. A., dos Santos, A. M. P., & dos Santos, W. N. L. (2019). Screening of Mangifera indica L. functional content using PCA and neural networks (ANN). Food Chemistry, 273, 115–123. https://doi.org/10.1016/j.foodchem.2018.01.129
Derakhshan, Z., Ferrante, M., Tadi, M., Ansari, F., Heydari, A., Hosseini, M. S., Conti, G. O., & Sadrabad, E. K. (2018). Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food and Chemical Toxicology, 114, 108–111. https://doi.org/10.1016/j.fct.2018.02.023
Dong, X., Huang, Y., Wang, Y., & He, X. (2019). Anti-inflammatory and antioxidant jasmonates and flavonoids from lychee seeds. Journal of Functional Foods, 54, 74–80. https://doi.org/10.1016/j.jff.2018.12.040
Fidelis, M., do Carmo, M. A. V., da Cruz, T. M., Azevedo, L., Myoda, T., Miranda Furtado, M., Boscacci Marques, M., Sant’Ana, A. S., Inês Genovese, M., Young Oh, W., Wen, M., Shahidi, F., Zhang, L., Franchin, M., de Alencar, S. M., LuizRosalen, P., & Granato, D. (2020). Camu-camu seed (Myrciaria dubia) – From side stream to an antioxidant, antihyperglycemic, antiproliferative, antimicrobial, antihemolytic, anti-inflammatory, and antihypertensive ingredient. Food Chemistry, 310, 125909. https://doi.org/10.1016/j.foodchem.2019.125909
Fu, X., Cheng, S., Liao, Y., Huang, B., Du, B., Zeng, W., Jiang, Y., Duan, X., & Yang, Z. (2018). Comparative analysis of pigments in red and yellow banana fruit. Food Chemistry, 239, 1009–1018. https://doi.org/10.1016/j.foodchem.2017.07.046
Gil-Martín, E., Forbes-Hernández, T., Romero, A., Cianciosi, D., Giampieri, F., & Battino, M. (2022). Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chemistry, 378, 131918. https://doi.org/10.1016/j.foodchem.2021.131918
Gonçalves Rodrigues, L. G., Mazzutti, S., Vitali, L., Micke, G. A., & Ferreira, S. R. S. (2019). Recovery of bioactive phenolic compounds from papaya seeds agroindustrial residue using subcritical water extraction. Biocatalysis and Agricultural Biotechnology, 22, 101367. https://doi.org/10.1016/j.bcab.2019.101367
Gosset-Erard, C., Zhao, M., Lordel-Madeleine, S., & Ennahar, S. (2021). Identification of punicalagin as the bioactive compound behind the antimicrobial activity of pomegranate (Punica granatum L.) peels. Food Chemistry, 352, 129396. https://doi.org/10.1016/j.foodchem.2021.129396
Guerrero-Castillo, P., Reyes, S., Robles, J., Simirgiotis, M. J., Sepulveda, B., Fernandez-Burgos, R., & Areche, C. (2019b). Biological activity and chemical characterization of Pouteria lucuma seeds: A possible use of an agricultural waste. Waste Management, 88, 319–327. https://doi.org/10.1016/j.wasman.2019.03.055
Kim, H., Moon, J. Y., Kim, H., Lee, D. S., Cho, M., Choi, H. K., Kim, Y. S., Mosaddik, A., & Cho, S. K. (2010). Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chemistry, 121(2), 429–436. https://doi.org/10.1016/j.foodchem.2009.12.060
León-Roque, N., Romero, G.B.M., Oblitas-Cruz, J. F., & Hidalgo-Chávez, D. W., (2023). Optimization of total polyphenol extraction and flavonoid screening by mass spectrometry in mango (Mangifera indica L.) waste from Peru. Food Science and Technology, 43, e105322, 1-9. https://doi.org/10.1590/fst.105322
Leporini, M., Tundis, R., Sicari, V., Pellicanò, T. M., Dugay, A., Deguin, B., & Loizzo, M. R. (2020). Impact of extraction processes on phytochemicals content and biological activity of Citrus × clementina Hort. Ex Tan. leaves: New opportunity for under-utilized food by-products. Food Research International, 127, 108742. https://doi.org/10.1016/j.foodres.2019.108742
Majidi, S. M., & Hadjmohammadi, M. R. (2021). Development of magnetic dispersive micro-solid phase extraction based on magnetic agarose nanoparticles and deep eutectic solvents for the isolation and pre-concentration of three flavonoids in edible natural samples. Talanta, 222(August 2020), 121649. https://doi.org/10.1016/j.talanta.2020.121649
Marina, Z., & Noriham, A. (2014). Quantification of total phenolic compound and in vitro antioxidant potential of fruit peel extracts. International Food Research Journal, 21(5), 1925–1929.
Masci, A., Coccia, A., Lendaro, E., Mosca, L., Paolicelli, P., & Cesa, S. (2016). Evaluation of different extraction methods from pomegranate whole fruit or peels and the antioxidant and antiproliferative activity of the polyphenolic fraction. Food Chemistry, 202, 59–69. https://doi.org/10.1016/j.foodchem.2016.01.106
Morais, D. R., Rotta, E. M., Sargi, S. C., Schmidt, E. M., Bonafe, E. G., Eberlin, M. N., Sawaya, A. C. H. F., & Visentainer, J. v. (2015). Antioxidant activity, phenolics and UPLC-ESI(-)-MS of extracts from different tropical fruits parts and processed peels. Food Research International, 77, 392–399. https://doi.org/10.1016/j.foodres.2015.08.036
More, P. R., & Arya, S. S. (2019). A novel, green cloud point extraction and separation of phenols and flavonoids from pomegranate peel: An optimization study using RCCD. Journal of Environmental Chemical Engineering, 7(5), 103306. https://doi.org/10.1016/j.jece.2019.103306
Pande, G., & Akoh, C. C. (2010). Organic acids, antioxidant capa-city, phenolic content and lipid characterisation of Georgia-grown underutilized fruit crops. Food Chemistry, 120(4), 1067–1075. https://doi.org/10.1016/j.foodchem.2009.11.054
Pattnaik, M., Pandey, P., Martin, G. J. O., Mishra, H. N., & Ashokkumar, M. (2021). Innovative technologies for extraction and microencapsulation of bioactives from plant-based food waste and their applications in functional food development. Foods, 10(2), 1–30. https://doi.org/10.3390/foods10020279
Pereira, R. M. S., López, B. G.-C., Diniz, S. N., Antunes, A. A., Moreno Garcia, D., Rocha Oliveira, C., & Marcucci, M. C. (2017). Quantification of flavonoids in Brazilian orange peels and industrial orange juice processing wastes. Agricultural Sciences, 08(07), 631–644. https://doi.org/10.4236/as.2017.87048
Ramful, D., Bahorun, T., Bourdon, E., Tarnus, E., & Aruoma, O. I. (2010). Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: Potential prophylactic ingredients for functional foods application. Toxicology, 278(1), 75–87. https://doi.org/10.1016/j.tox.2010.01.012
Ribeiro, L. F., Ribani, R. H., Francisco, T. M. G., Soares, A. A., Pontarolo, R., & Haminiuk, C. W. I. (2015). Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1007, 72–80. https://doi.org/10.1016/j.jchromb.2015.11.005
Russo, M., Arigò, A., Calabrò, M. L., Farnetti, S., Mondello, L., & Dugo, P. (2016). Bergamot (Citrus bergamia Risso) as a source of nutraceuticals: Limonoids and flavonoids. Journal of Functional Foods, 20, 10–19. https://doi.org/10.1016/j.jff.2015.10.005
Saffarzadeh-Matin, S., & Masoudi-Khosrowshahi, F. (2018). Simultaneous separation and concentration of polyphenols from pomegranate industrial waste by multistage counter-current system; comparing with ultrafiltration concentration. Separation and Purification Technology, 204(January), 261–275. https://doi.org/10.1016/j.seppur.2018.04.083
Saleem, M., & Saeed, M. T. (2020). Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. Journal of King Saud University - Science, 32(1), 805–810. https://doi.org/10.1016/j.jksus.2019.02.013
Sembiring, E. N., Elya, B., & Sauriasari, R. (2018). Phytochemical screening, total flavonoid and total phenolic content and antioxidant activity of different parts of Caesalpinia bonduc (L.) Roxb. Pharmacognosy Journal, 10(1), 123–127. https://doi.org/10.5530/pj.2018.1.22
Singh, A., Holvoet S., & Mercenier, A. (2011). Dietary polyphenols in the prevention and treatment of allergic diseases. Clinical & Experimental Allergy, 41, 1346–1359. https://doi.org/10.1111/j.1365-2222.2011.03773.x
Soquetta, M. B., Stefanello, F. S., Huerta, K. D. M., Monteiro, S. S., Da Rosa, C. S., & Terra, N. N. (2016). Characterization of physiochemical and microbiological properties, and bioactive compounds, of flour made from the skin and bagasse of kiwi fruit (Actinidia deliciosa). Food Chemistry, 199, 471–478. https://doi.org/10.1016/j.foodchem.2015.12.022
Suleria, H. A. R., Barrow, C. J., & Dunshea, F. R. (2020). Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods, 9(9). https://doi.org/10.3390/foods9091206
Tang, W., Li, S., Wang, M., & Wang, B. (2021). Ultrasound-assisted extraction of four groups of Osmanthus fragrans fruit: Optimization, UPLC-Orbitrap-MS/MS characterization and anti-inflammatory activity evaluation. Arabian Journal of Chemistry, 14(4), 103086. https://doi.org/10.1016/j.arabjc.2021.103086
Tashakkori, P., Tağaç, A. A., & Merdivan, M. (2021). Fabrication of montmorillonite/ionic liquid composite coated solid-phase microextraction fibers for determination of phenolic compounds in fruit juices by gas chromatography and liquid chromatography. Journal of Chromatography A, 1635. https://doi.org/10.1016/j.chroma.2020.461741
Warnasih, S., Salam, S., Hasanah, U., Ambarsari, L., & Sugita, P. (2020). Total phenolic, flavonoid content and metabolite profiling of methanol extract of date (Phoenix dactylifera) seeds by LC-QTOF-MS. AIP Conference Proceedings, 2243. https://doi.org/10.1063/5.0001436
Yoichi, N., Koji, S., Hiroyuki, S., Toshinao, I., Masamichi, Y., & Hideaki, O. (2006). Flavonoid Composition of Fruit Tissues of Citrus Species. Bioscience, Biotechnology, and Biochemistry, 70(1), 178–192. https://doi.org/10.1271/bbb.70.178
Zheng, H., Zhen, X. T., Chen, Y., Zhu, S. C., Ye, L. H., Yang, S. W., Wang, Q. Y., & Cao, J. (2021). In situ antioxidation-assisted matrix solid-phase dispersion microextraction and discrimination of chiral flavonoids from citrus fruit via ion mobility quadrupole time-of-flight high-resolution mass spectrometry. Food Chemistry, 343(October 2020), 128422. https://doi.org/10.1016/j.foodchem.2020.128422.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Scientia Agropecuaria
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).