Maximización del contenido de Omega-3 (EPA y DHA) en el proceso de acidólisis enzimática de aceite de canola y concentrado de ácidos grasos poliinsaturados de cadena larga (AGPICL), en condiciones de CO2 supercrítico
DOI:
https://doi.org/10.17268/sci.agropecu.2015.04.08Palabras clave:
Optimización, dióxido de carbono supercrítico, triacilglicéridos estructurados, ácido eicosapentaenoico (EPA), ácido docosahexaenoico (DHA)Resumen
El objetivo del presente trabajo fue optimizar el contenido de ácidos grasos EPA y DHA en el proceso de acidólisis enzimática de aceite de canola y concentrado de ácidos grasos poliinsaturados de cadena larga (AGPICL) en triacilglicéridos estructurados (TAGs). Para ello, se empleó lipasa B inespecífica de Candida antarctica inmovilizada en condiciones CO2 supercrítico. El aceite crudo de salmón obtenido a partir de los subproductos industriales se utilizó para obtener concentrados de AGPICL. Como primer paso, se obtuvo un concentrado de AGPICL mediante una hidrolisis básica y posterior complejación con urea. Posteriormente se optimizó las variables del proceso de acidólisis enzimática mediante un diseño compuesto central rotacional 25-1 más estrella, de 5 factores con 30 ensayos experimentales, basado en la metodología superficie respuesta. Las condiciones óptimas que maximizaron el contenido de EPA a 3,92 g/100 g de ácidos grasos totales (AGT) y de DHA a 9,09 g/100 g AGT en los TAGs purificados correspondieron a una relación AGPICL/Canola de 71,71 %, temperatura de 57,8 ºC, presión de 172,0 bar, tiempo de 23,97 h y concentración de enzima de 7,74%.Citas
AOCS. 1993. Official Methods and Recommended Practices of American Oil Chemists’ Society. 4th Ed. AOCSS Press, Champaign: Ca 5a-40:1, Cd 8b-90: 1 – 2, Cd 18-19: 1 – 2.
AOCS. 2009. Determination of cis-, trans-, saturated, mono-unsaturated, and polyunsaturated fatty acids in extracted fats by capillary GLC. AOCS Official Method Ce 1j-7. Sampling and analysis of commercial fats and oils.
Araya, J. 2008. Riesgos y beneficios del consumo de grasas y aceites. En Programa de Educación a Distancia. Departamento de Nutrición. Facultad de Medicina. Universidad de Chile.
Burr, M.L.; Fehily, A.M.; Gilbert, J.F.; Rogers, S.; Holliday, R.M.; Sweetnam, P.M.; Elwood, P.C.; Deadman, N.M. 1989. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet 2(8666): 757- 761.
CRN (Council For Responsible Nutrition). 2015. Oxidation in Omega-3 Oils: An Overview. A White Paper Prepared by the Global Organization for EPA and DHA Omega-3s. Available in: http://crnusa.org/pdfs/GOED+CRNWhitePaper-Omega-3oxidation.pdf
Dyerberg, J.; Madsen, P.; Møller, J.M.; Aardestrup, I.; Schmidt, E.B. 2010. Biovailabity of marine n-3 fatty acid formulations. Prostaglandins, Leukotrienes and Essential Fatty Acids 83: 137-141.
FAO (Organización de las Naciones Unidas para la alimentación y la agricultura). 2012. Grasas y ácidos grasos en nutrición humana. Consulta de expertos. Estudio FAO Alimentación y Nutrición ISSN 1014-2916 FAO ISBN 978-92-5-3067336. FAO y FINUT, 2012 (edición española).
Ghazani, S.M.; Marangoni, A.G. 2013. Minor components in canola oil and effects of refining on these constituents: A review. Journal of the American Oil Chemists’ Society 90: 923 – 932.
Haggsma, N.; Van Gent, C.M.; Luten, J.B.; De Jong, R.W.; Van Doorn, E. 1982. Preparation of an ω-3 fatty acid concentrate from cod liver oil. Journal of the American Oil Chemists’ Society 59(3): 117 – 118.
Huang, K.H.; Akoh, C.C. 1996. Optimization and scale up of enzymatic synthesis of structure lipids using RSM. J Food Sci 6:137–41.
IFOS (International Fish Oil Standards). 2009. Consumer Report. Available in: http://www.nutrasource.ca/ifos/
Iverson, J.L.; Weik, R.W. 1967. Correlation of fatty acid structure with preferential order of urea complex formation. Journal of the Association of Official Analytical Chemists’ 50: 1111 – 118.
Jiménez, M.J.; Esteban, L.; Robles, A.; Hita, E.; González, P.A.; Muñío, M.M.; Molina, E. 2010. Production of triacylglycerols rich in palmitic acid at sn-2 position by lipase-catalyzed acidolysis. Biochemical Engineering Journal 51: 172-179.
Liu, S.; Zhang, C.; Hong, P.; Ji, H. 2006. Concentration of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) of tuna oil by urea complexation: optimization of process parameters. Journal of Food Engineering 73: 203 – 209.
Masson, L. 1994. Criterio de calidad para materias grasas utilizadas frecuentemente en la nutrición animal y de peces. Available in: http://www.fao.org/docrep/field/003/ab482s/ab482s10.htm.
Masson, L.; Mella, M. 1985. Materias grasas de consumo habitual y potencial en Chile: Composición en ácidos grasos. 1ª ed, Editorial Universitaria, Santiago, Chile. 30 p.
Méndez, C.; Masson, L.; Jiménez, P. 2010. Estabilización de aceite de pescado por medio de antioxidantes naturales. A&G 30(3): 270 – 278.
Neubronner, J.; Schuchardt, J.P.; Kressel, G.; Merkel, M.; Von, Schacky C.; Hahn, A. 2011. Enhanced increase of omega-3 index in response to long-term n-3 fatty acid supplementation from triacylglycerides versus ethyl esters. European Journal of Clinical Nutrition 65: 247-254.
Neuringer, M.; Connor, W.E.; Lin, D.S.; Barstad, L.; Luck, S. 1986. Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc. Nat. Acad. Sci. 83: 4021-4025.
Osborn, H.T.; Akoh, C.C. 2002. Structured lipids-novel fats with medical, nutraceutical, and food applications. Comprehensive reviews in Food Science and Food Safety 45: 110-120.
Pando, M.E.; Bravo, B.; Berrios, M.; Galdames, A.; Rojas, C.; Romero, N.; Camilo, C.; Encina, C.; Rivera, M.; Rodriguez, A.; Aubourg, S. 2014. Concentrating n-3 fatty acids from crude and refined commercial salmon oil. Czech J. Food Sci 32(2): 169 – 176.
Ramírez, A. 2006. Salmon by-products proteins Circular área marina Nº 1027 FAO, Roma, Italia.
Ratnayake, W.M.N.; Olsson, B.; Matthews, D.; Ackman, R.G. 1988. Preparation of omega-3 PUFA concentrates from fish oils via urea complexation. Fat Science and Technology 90: 381 – 386.
Robles, A.; Esteban, L.; Giménez, A.; Camacho, B.; Ibañez, M.J.; Molina, E. 1999. Lipase-catalyzed esterification of glycerol and polyunsaturated fatty acids from fish and microalgae oils. Journal of Biotechnology 70: 379 – 391.
Robles, A.; Jiménez, M.J.; Esteban, L.; Gonzáles, P.A.; Martín, L.; Rodríguez, A.; Molina, E. 2011. Enzymatic production of human milk fat substitutes containing palmitic and docosahexaenoic acids at sn-2 position and oleic acid at sn-1,3 positions. LWT-Food Science and Technology 44: 1986-1992.
Sharma, M.; Rastogi, N.K.; Lokesk, B.R. 2009. Synthesis of structured lipid with balanced Omega-3: Omega-6 ratio by lipase-catalyzed acidolysis reaction: Optimization of reaction using response surface methodology. Process Biochemistry 44: 1284 – 1288.
Simopoulos, A.P. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56: 365 – 379.
Simopoulus, A. 1991. Omega-3 fatty acids in health and disease and in grown and development. Am. J. Clin. Nutr. 54: 438-468.
Strocchi, A.; Bonaga, G. 1975. Correlation between urea inclusion compounds and conformational structure of unsaturated C-18 fatty acid methyl esters. Chemical Physical Lipids 15: 87 – 94.
Uauy, R.; Valenzuela, A. 2000. Marine Oils: The health benefits of n-3 fatty acids. Nutrition 16: 680-684.
Uauy-Dagach, R.; Valenzuela, A. 1992. Marine oils as a source of Omega-3 fatty acids in the diet. Prog. Food Nutr. Sci. 16:199–243.
Valenzuela, A.; Sanhueza, J. 2009. Aceites de origen marino; Su importancia en la nutrición y en la ciencia de los alimentos. Revista Chilena de Nutrición 36 (3): 246 – 257.
Valenzuela, R.; Tapia, G.; González, M.; Valenzuela, A. 2011. Ácidos grasos omega-3 (EPA y DHA) y sus aplicaciones en diversas situaciones clínicas. Revista Chilena de Nutrición 38 (3): 356 – 367.
Wanasundara, U.A.; Shahidi, F. 1995. Storage stability of microencapsulated seal blubber oil. J. Food Lipids 2: 73 – 86.
Wanasundara, U.N. 1996. Marine oils: stabilization, structural characterization and omega-3 fatty acid concentration. Ph.D. thesis, Memorial University of Newfoundland, Canada.
Wanasundara, U.; Shahidi, F. 1999. Concentration of omega 3-polyunsaturated fatty acids of seal blubber oil by urea complexation: optimization of reaction conditions. Food Chemistry 65:41-49.
Recibido 08 julio 2015.
Aceptado 06 noviembre 2015.
Corresponding author: E-mail: rsiche@unitru.edu.pe (R. Siche).
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores que publican en esta revista aceptan los siguientes términos:
a. Los autores conservan los derechos de autor y conceden a la revista el derecho publicación, simultáneamente licenciada bajo una licencia de Creative Commons que permite a otros compartir el trabajo, pero citando la publicación inicial en esta revista.
b. Los autores pueden celebrar acuerdos contractuales adicionales separados para la distribución no exclusiva de la versión publicada de la obra de la revista (por ejemplo, publicarla en un repositorio institucional o publicarla en un libro), pero citando la publicación inicial en esta revista.
c. Se permite y anima a los autores a publicar su trabajo en línea (por ejemplo, en repositorios institucionales o en su sitio web) antes y durante el proceso de presentación, ya que puede conducir a intercambios productivos, así como una mayor citación del trabajo publicado (ver efecto del acceso abierto).