Optimization of a drink with cacao Theobroma cacao L. CCN51 exudate and lactic serum using surface response

Authors

  • H. Rivera-Rojas Universidad Nacional Agraria de la Selva, Facultad de Ingeniería en Industrias Alimentarias, Av. Universitaria km 1,5. Tingo María.
  • H. Tafur-Pereda Universidad Nacional Agraria de la Selva, Facultad de Ingeniería en Industrias Alimentarias, Av. Universitaria km 1,5. Tingo María
  • J. Pisco-Caldas Universidad Nacional Agraria de la Selva, Facultad de Ingeniería en Industrias Alimentarias, Av. Universitaria km 1,5. Tingo María
  • Fredy Crispín Sánchez Universidad Nacional Agraria La Molina, Facultad de Ingeniería Pesquera, Departamento de Acuicultura e Industrias Pesqueras, Lima 12, La Molina, Lima
  • Raúl Porturas Olaechea Universidad Nacional Agraria La Molina, Facultad de Ingeniería Pesquera, Departamento de Acuicultura e Industrias Pesqueras, Lima 12, La Molina, Lima

DOI:

https://doi.org/10.17268/agroind.sci.2023.03.01

Keywords:

rheology, pseudoplastic, storage, fluent, Newtonian

Abstract

The aim of this research was to characterize rheologically a drink formulated and elaborated with exudate of cocoa (Theobroma cacao L.) CCN51 and lactic serum. The formulation was optimized using the response surface methodology for the attributes color, smell, taste and acceptability; subsequently, a multiple surface analysis was performed to determine the global optimal parameters by means of the desirability function. The results ensure that the proportion exudate and lactic serum should be 40/60 with 10% sucrose. The rheology of the beverage shows that it is a non-Newtonian fluid of the pseudoplastic type. In general, temperature and storage time have a significant effect on the flow index and consistency index. The proximal and microbiological chemical tests meet the standards, and the drink is suitable for human consumption. The rheological results of drinks based on cocoa exudate and lactic whey can be used as a parameter for quality control and sizing of machines, equipment, pipes, connections, filters, drive pumps and research provide knowledge for the use of agro-industrial residue. and the dairy industry.

References

Andrade, A., & Cuenca-Nevárez, G. (2021). Application of Cocoa Mucilage (Theobroma Cacao) In the Treatment of Wastewater from the Production of Cassava Starch (Manihot Esculenta). Annals of the Romanian Society for Cell Biology, 25(7), 1220-1235.

AOAC, A. o. (2016). Official Methods of Analysis. 2(20). US.

Barbosa-Cánovas, G., Ibarz, A., & Peleg, M. (1993). Propiedades reológicas de alimentos fluidos. Revisión Alimentaria, 241, 39–89.

Berk, Z. 2018. Chapter 2 - Fluid flow. In Z. Berk (Ed.), Food Process Engineering and Technology (Third Edition) (pp. 31-78): Academic Press.

Callupe Loayza, J. A. (2022). Aprovechamiento de la pulpa de café (Coffea spp) y cáscara de naranja valencia (Citrus sinensis), para la elaboración de una bebida. Tesis Ingeniero Industrias Alimentarias. Universidad Nacional Agraria de la Selva.

Cheftel, J. C, Cheftel, H., & Besacon, P. (1989). Métodos de conservacíon. Introduction a la bioquímica y tecnología de los alimentos. Zaragoza, España: Acribia.

Cheftel, J. C., Cheftel, H., Besacon, P., & Desnuelle, P. (1980). Introducción a la bioquímica y tecnología de los alimentos (Acrinia ed., Vol. 1). España.

Collazos, C. (1993). La composición de alimentos de mayor consumo en el Perú. Lima: Ministerio de Salud, Instituto Nacional de Nutrición.

Corton, R., Jordan, K., Suarez, J., Gesalan, U., Carlet, C., & Valdez, A. (2022). Acceptability of Theobroma cacao as an Alternative Tea. ASEAN Journal of Agriculture and Food Engineering, 1(1), 23-28.

Delgado-Ospina, J., Lucas-González, R., Viuda-Martos, M., Fernández-López, J., Pérez-Álvarez, J., Martuscelli, M., & Chaves-López, C. (2021). Bioactive compounds and techno-functional properties of high-fiber co-products of the cacao agro-industrial chain. Heliyon, 7(4). doi:https://doi.org/10.1016/j.heliyon.2021.e06799

Domínguez, D. J. (2006). Optimización simultánea para la mejora continua y reducción de costos en procesos. Ingeniería y Ciencia, 4, 145-162.

Espert, M., Salvador, A., Sanz, T., & Hernández, M. (2022). Symposium PO Section: Food Rheology (FR). Rheology (26-28 April), 117.

FAO. (1986). Food analysis: general techniques, additives, contaminants, and composition. En: Manuals of food quality control 14/7. Food and nutrition paper, 2. Italia.

Gibson, M., y Newsham, P. 2018. Chapter 7 - Rheology Food Science and the Culinary Arts (pp. 89-103): Academic Press.

Goksen, G., Demir, D., Dhama, K., Kumar, M., Shao, P., Xie, F., & Lorenzo, J. (2023). Mucilage polysaccharide as a plant secretion: Potential trends in food and biomedical applications. International Journal of Biological Macromolecules, 230(1), 123146. doi:https://doi.org/10.1016/j.ijbiomac.2023.123146

Gutiérrez-Macías, P., Mirón-Mérida, V., Rodríguez-Nava, C., & Barragán-Huerta, B. (2021). Cocoa: Beyond chocolate, a promising material for potential value-added products. In Valorization of Agri-Food Wastes and By-Products - Academic Press, 267-288.

Jafari, Z., Shirazinejad, A., Hashemi, S. M., & Fathi, M. (2023). Influence of temperature, ion type, and ionic strength on dynamic viscoelastic, steady‐state, and dilute‐solution behavior of Melissa officinalis seed gum. Journal of Food Process Engineering, 46(8), e14363. doi:https://doi.org/10.1111/jfpe.14363

Jaimez, R., Barragan, L., Fernández-Niño, M., Wessjohann, L., Cedeño-Garcia, G., Sotomayor Cantos, I., & Arteaga, F. (2022). Theobroma cacao L. cultivar CCN 51: a comprehensive review on origin, genetics, sensory properties, production dynamics, and physiological aspects. PeerJ, 10, 12676. doi:https://doi.org/10.7717/peerj.12676

Jean-Marie, E., Jiang, W., Bereau, D., & Robinson, J. (2022). Theobroma cacao and Theobroma grandiflorum: Botany, Composition and Pharmacological Activities of Pods and Seeds. Foods, 11(24), 3966. doi:https://doi.org/10.3390/foods11243966

Kong, F., Tang, J., Rasco, B., & Crapo, C. (2007). Kinetics of salmon quality changes during thermal processing. Journal of Food Engineering, 83(4), 510-520.

Liu, X., Song, Q., Li, X., Chen, Y., Liu, C., Zhu, X., . . . Huang, J. (2021). Effects of different dietary polyphenols on conformational changes and functional properties of protein–polyphenol covalent complexes. Food Chemistry, 361(1), 130071. doi:https://doi.org/10.1016/j.foodchem.2021.130071

Manfugás, J. E. (2020). Evaluación sensorial de los alimentos. Cuba: Editorial Universitaria.

McClements, D. (2022). Dairy Alternatives–Cheese, Yogurt, Butter, and Ice Cream. Next-Generation Plant-based Foods: Design, Production, and Properties. doi:https://doi.org/10.1007/978-3-030-96764-2_9

Mehra, R., Kumar, H., Kumar, N., Ranvir, S., Jana, A., Buttar, H., & Guiné, R. (2021). Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. Journal of Functional Foods, 87, 104760. doi:https://doi.org/10.1016/j.jff.2021.104760

MIDAGRI. (2022). Observatorio de commodities. https://repositorio.midagri.gob.pe/bitstream/20.500.13036/1363/1/Commodities%20Cacao_%20abr-jun%202022.pdf

MINSA. (2008). Norma Sanitaria que establece los criterios microbiológicos de calidad sanitaria e inocuidad para los alimentos y bebidas de consumo humano. NTS 071- MINSA/DIGESA V.01 con RM N°591. Perú.

Moreira-Morillo, A., Cedeño-Moreira, A., Canchingnia-Martinez, F., & Garces-Fiallos, F. (2021). Lasiodiplodia theobromae (Pat.) Griffon & Maul [(sin.) Botryodiplodia theobromae Pat] en el cultivo de cacao: síntomas, ciclo biológico y estrategias de manejo. Scientia Agropecuaria, 12(4), 653-662. doi:http://dx.doi.org/10.17268/sci.agropecu.2021.068

Pires, A., Marnotes, N., Rubio, O., Garcia, A., & Pereira, C. (2021). Dairy by-products: A review on the valorization of whey and second cheese whey. Foods, 10(5), 1067. doi:https://doi.org/10.3390/foods10051067

Pulido, H. G., De La Vara Salazar, R., González, P. G., Martínez, C. T., & Pérez, M. D. C. T. 2012. Análisis y diseño de experimentos: McGraw-Hill.

Quispe, W., Esenarro, D., Rodriguez, C., Veliz, M., & Cordova, G. (2021). Formulation of a Functional Lactic Drink Enriched with Different Proportions of Quinoa (Chenopodium quinoa). International Journal of Food Engineering, 7(1). doi:doi: 10.18178/ijfe.7.1.12-16

Rayner, R. (1995). Fluid Mechanics Principles. In R. Rayner (Ed.), Pump Users Handbook (Fourth Edition) (pp. 1-22). Amsterdam: Elsevier Science.

Severiano-Pérez, P. (2019). ¿Qué es y cómo se utiliza la evaluación sensorial?. Inter disciplina, 7(19), 47-68. Ciudad de México. https://doi.org/10.22201/ceiich.24485705e.2019.19.70287

Singh, R. P., & Heldman, D. R. 2014. Chapter 2 - Fluid Flow in Food Processing. In R. P. Singh y D. R. Heldman (Eds.), Introduction to Food Engineering (Fifth Edition) (pp. 65-209). San Diego: Academic Press. Steffe, J. F. 1996. Rheological methods in food process engineering: Freeman press.

Sirmacekic, E., Atilgan, A., Rolbiecki, R., Jagosz, B., Rolbiecki, S., Gokdogan, O., & Kocięcka, J. (2022). Possibilities of Using Whey Wastes in Agriculture: Case of Turkey. Energies, 15(24), 9636. doi:https://doi.org/10.3390/en15249636

Vásquez-García, J., Santos-Pelaez, J., Malqui-Ramos, R., & Bobadilla, L. (2022). Agromorphological characterization of cacao (Theobroma cacao L.) accessions from the germplasm bank of the National Institute of Agrarian Innovation, Peru. Heliyon, 8(10), 888. doi:https://doi.org/10.1016/j.heliyon.2022.e10888

Wang, Y., & Selomulya, C. (2022). Food rheology applications of large amplitude oscillation shear (LAOS). Trends in Food Science & Technology, 127, 221-244. doi:https://doi.org/10.1016/j.tifs.2022.05.018

Wilbanks, D., Yazdi, S., & Lacey, J. (2022). Effects of varying casein and pectin concentrations on the rheology of high-protein cultured milk beverages stored at ambient temperature. Journal of Dairy Science, 105(1), 72-82. doi:https://doi.org/10.3168/jds.2021-20597

Wu, G., Hui, X., Gong, X., Tran, K., Stipkovits, L., Mohan, M., & Brennan, C. (2021). Functionalization of bovine whey proteins by dietary phenolics from molecular-level fabrications and mixture-level combinations. Trends in Food Science & Technology, 110, 107-119.

Yanchaguano, L., & Israel, H. (2011). Elaboración de una bebida nutritiva a partir de la pulpa de maracuyá (Pasiflora Incarnata), y suero láctico, en la planta procesadora de frutas y hortalizas de la Universidad Estatal de Bolívar. Universidad Estatal de Bolívar. Facultad de Ciencias Agropecuarias. Escuela de Ingeniería AgroindustrialI.

Yousefi, A. R., Eivazlou, R., & Razavi, S. M. A. (2016). Steady shear flow behavior of sage seed gum affected by various salts and sugars: Time-independent properties. International Journal of Biological Macromolecules, 91, 1018-1024. https://doi.org/10.1016/j.ijbiomac.2016.06.046

Zhao, Y., Wang, C., Lu, W., Sun, C., Zhu, X., & Fang, Y. (2021). Evolution of physicochemical and antioxidant properties of whey protein isolate during fibrillization process. Food Chemistry, 357(30), 129751. doi:https://doi.org/10.1016/j.foodchem.2021.129751

Published

2024-01-01

How to Cite

Rivera-Rojas, H. ., Tafur-Pereda, H. ., Pisco-Caldas, J. ., Crispín Sánchez, F. ., & Porturas Olaechea, R. . (2024). Optimization of a drink with cacao Theobroma cacao L. CCN51 exudate and lactic serum using surface response. Agroindustrial Science, 13(3), 119-126. https://doi.org/10.17268/agroind.sci.2023.03.01

Issue

Section

Artículos de investigación

Most read articles by the same author(s)